EconPapers    
Economics at your fingertips  
 

Multimodal Human Recognition in Significantly Low Illumination Environment Using Modified EnlightenGAN

Ja Hyung Koo, Se Woon Cho, Na Rae Baek and Kang Ryoung Park
Additional contact information
Ja Hyung Koo: Division of Electronics and Electrical Engineering, Dongguk University, 30 Pildong-ro 1-gil, Jung-gu, Seoul 04620, Korea
Se Woon Cho: Division of Electronics and Electrical Engineering, Dongguk University, 30 Pildong-ro 1-gil, Jung-gu, Seoul 04620, Korea
Na Rae Baek: Division of Electronics and Electrical Engineering, Dongguk University, 30 Pildong-ro 1-gil, Jung-gu, Seoul 04620, Korea
Kang Ryoung Park: Division of Electronics and Electrical Engineering, Dongguk University, 30 Pildong-ro 1-gil, Jung-gu, Seoul 04620, Korea

Mathematics, 2021, vol. 9, issue 16, 1-43

Abstract: Human recognition in indoor environments occurs both during the day and at night. During the day, human recognition encounters performance degradation owing to a blur generated when a camera captures a person’s image. However, when images are captured at night with a camera, it is difficult to obtain perfect images of a person without light, and the input images are very noisy owing to the properties of camera sensors in low-illumination environments. Studies have been conducted in the past on face recognition in low-illumination environments; however, there is lack of research on face- and body-based human recognition in very low illumination environments. To solve these problems, this study proposes a modified enlighten generative adversarial network (modified EnlightenGAN) in which a very low illumination image is converted to a normal illumination image, and the matching scores of deep convolutional neural network (CNN) features of the face and body in the converted image are combined with a score-level fusion for recognition. The two types of databases used in this study are the Dongguk face and body database version 3 (DFB-DB3) and the ChokePoint open dataset. The results of the experiment conducted using the two databases show that the human verification accuracy (equal error rate (ERR)) and identification accuracy (rank 1 genuine acceptance rate (GAR)) of the proposed method were 7.291% and 92.67% for DFB-DB3 and 10.59% and 87.78% for the ChokePoint dataset, respectively. Accordingly, the performance of the proposed method was better than the previous methods.

Keywords: multimodal human recognition; very low illumination environment; image enhancement; modified EnlightenGAN; CNN (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2021
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://www.mdpi.com/2227-7390/9/16/1934/pdf (application/pdf)
https://www.mdpi.com/2227-7390/9/16/1934/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:9:y:2021:i:16:p:1934-:d:614052

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:9:y:2021:i:16:p:1934-:d:614052