Analytical Solution of Laterally Loaded Free-Head Long Piles in Elasto-Plastic Cohesive Soils
Ayman Abd-Elhamed
Additional contact information
Ayman Abd-Elhamed: Physics and Engineering Mathematics Department, Faculty of Engineering-Mattaria, Helwan University, Cairo 11718, Egypt
Mathematics, 2021, vol. 9, issue 16, 1-13
Abstract:
This research study presents a closed form solution of responses of laterally loaded long piles embedded on cohesive soils with a constant subgrade modulus. The surrounding soil medium is modelled as elastic-perfectly plastic. The closed form solution is derived by solving the governing differential equation of the pile–soil system. The most popular numerical computation software package MATLAB is utilized for the implementation of solutions. The provided analytical method reliably calculates the pile head deflection and bending moment required for engineering design purposes. Results are discussed and verified with solutions of an equivalent three-dimensional finite element (FE) model developed using ANSYS software. It was concluded that the proposed analytical model could efficiently provide the exact solution of embedded piles in elasto-plastic cohesive soil under lateral loads.
Keywords: analytical solution; laterally loaded long piles; cohesive soil; elasto-plastic soil; ANSYS software (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2021
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2227-7390/9/16/1961/pdf (application/pdf)
https://www.mdpi.com/2227-7390/9/16/1961/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:9:y:2021:i:16:p:1961-:d:615530
Access Statistics for this article
Mathematics is currently edited by Ms. Emma He
More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().