EconPapers    
Economics at your fingertips  
 

Kadomtsev–Petviashvili Hierarchy: Negative Times

Andrei K. Pogrebkov
Additional contact information
Andrei K. Pogrebkov: Steklov Mathematical Institute, Russian Academy of Sciences, 119991 Moscow, Russia

Mathematics, 2021, vol. 9, issue 16, 1-10

Abstract: The Kadomtsev–Petviashvili equation is known to be the leading term of a semi-infinite hierarchy of integrable equations with evolutions given by times with positive numbers. Here, we introduce new hierarchy directed to negative numbers of times. The derivation of such systems, as well as the corresponding hierarchy, is based on the commutator identities. This approach enables introduction of linear differential equations that admit lifts up to nonlinear integrable ones by means of the special dressing procedure. Thus, one can construct not only nonlinear equations, but corresponding Lax pairs as well. The Lax operator of this evolution coincides with the Lax operator of the “positive” hierarchy. We also derive (1 + 1)-dimensional reductions of equations of this hierarchy.

Keywords: commutator identities; integrable hierarchies; reductions (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2021
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/9/16/1988/pdf (application/pdf)
https://www.mdpi.com/2227-7390/9/16/1988/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:9:y:2021:i:16:p:1988-:d:618085

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:9:y:2021:i:16:p:1988-:d:618085