An Improved Taylor Algorithm for Computing the Matrix Logarithm
Javier Ibáñez,
Jorge Sastre,
Pedro Ruiz,
José M. Alonso and
Emilio Defez
Additional contact information
Javier Ibáñez: Instituto de Instrumentación para Imagen Molecular, Universitat Politècnica de València, Av. dels Tarongers, 14, 46011 Valencia, Spain
Jorge Sastre: Instituto de Telecomunicaciones y Aplicaciones Multimedia, Universitat Politècnica de València, Ed. 8G, Camino de Vera s/n, 46022 Valencia, Spain
Pedro Ruiz: Instituto de Instrumentación para Imagen Molecular, Universitat Politècnica de València, Av. dels Tarongers, 14, 46011 Valencia, Spain
José M. Alonso: Instituto de Instrumentación para Imagen Molecular, Universitat Politècnica de València, Av. dels Tarongers, 14, 46011 Valencia, Spain
Emilio Defez: Instituto de Matemática Multidisciplinar, Universitat Politècnica de València, Ed. 8G, Camino de Vera s/n, 46022 Valencia, Spain
Mathematics, 2021, vol. 9, issue 17, 1-19
Abstract:
The most popular method for computing the matrix logarithm is a combination of the inverse scaling and squaring method in conjunction with a Padé approximation, sometimes accompanied by the Schur decomposition. In this work, we present a Taylor series algorithm, based on the free-transformation approach of the inverse scaling and squaring technique, that uses recent matrix polynomial formulas for evaluating the Taylor approximation of the matrix logarithm more efficiently than the Paterson–Stockmeyer method. Two MATLAB implementations of this algorithm, related to relative forward or backward error analysis, were developed and compared with different state-of-the art MATLAB functions. Numerical tests showed that the new implementations are generally more accurate than the previously available codes, with an intermediate execution time among all the codes in comparison.
Keywords: matrix logarithm; matrix square root; inverse scaling and squaring method; Taylor series; Paterson–Stockmeyer method; matrix polynomial evaluation (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2227-7390/9/17/2018/pdf (application/pdf)
https://www.mdpi.com/2227-7390/9/17/2018/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:9:y:2021:i:17:p:2018-:d:620346
Access Statistics for this article
Mathematics is currently edited by Ms. Emma He
More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().