EconPapers    
Economics at your fingertips  
 

On the Embed and Project Algorithm for the Graph Bandwidth Problem

Janez Povh
Additional contact information
Janez Povh: Faculty of Mechanical Engineering, University of Ljubljana, Aškerčeva ulica 6, SI-1000 Ljubljana, Slovenia

Mathematics, 2021, vol. 9, issue 17, 1-15

Abstract: The graph bandwidth problem, where one looks for a labeling of graph vertices that gives the minimum difference between the labels over all edges, is a classical NP-hard problem that has drawn a lot of attention in recent decades. In this paper, we focus on the so-called Embed and Project Algorithm (EPA) introduced by Blum et al. in 2000, which in the main part has to solve a semidefinite programming relaxation with exponentially many linear constraints. We present several theoretical properties of this special semidefinite programming problem (SDP) and a cutting-plane-like algorithm to solve it, which works very efficiently in combination with interior-point methods or with the bundle method. Extensive numerical results demonstrate that this algorithm, which has only been studied theoretically so far, in practice gives very good labeling for graphs with n ? 1000 .

Keywords: graph bandwidth problem; semidefinite programming; combinatorial optimization; embed and project algorithm; approximation algorithm (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/9/17/2030/pdf (application/pdf)
https://www.mdpi.com/2227-7390/9/17/2030/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:9:y:2021:i:17:p:2030-:d:620783

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:9:y:2021:i:17:p:2030-:d:620783