On the Approximated Solution of a Special Type of Nonlinear Third-Order Matrix Ordinary Differential Problem
Emilio Defez,
Javier Ibáñez,
José M. Alonso,
Michael M. Tung and
Teresa Real-Herráiz
Additional contact information
Emilio Defez: Instituto de Matemática Multidisciplinar, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
Javier Ibáñez: Instituto de Instrumentación para Imagen Molecular, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
José M. Alonso: Instituto de Instrumentación para Imagen Molecular, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
Michael M. Tung: Instituto de Matemática Multidisciplinar, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
Teresa Real-Herráiz: Instituto de Matemática Multidisciplinar, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
Mathematics, 2021, vol. 9, issue 18, 1-18
Abstract:
Matrix differential equations are at the heart of many science and engineering problems. In this paper, a procedure based on higher-order matrix splines is proposed to provide the approximated numerical solution of special nonlinear third-order matrix differential equations, having the form Y ( 3 ) ( x ) = f ( x , Y ( x ) ) . Some numerical test problems are also included, whose solutions are computed by our method.
Keywords: higher-order matrix splines; third-order matrix differential equations (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2227-7390/9/18/2262/pdf (application/pdf)
https://www.mdpi.com/2227-7390/9/18/2262/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:9:y:2021:i:18:p:2262-:d:635861
Access Statistics for this article
Mathematics is currently edited by Ms. Emma He
More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().