EconPapers    
Economics at your fingertips  
 

On the Approximated Solution of a Special Type of Nonlinear Third-Order Matrix Ordinary Differential Problem

Emilio Defez, Javier Ibáñez, José M. Alonso, Michael M. Tung and Teresa Real-Herráiz
Additional contact information
Emilio Defez: Instituto de Matemática Multidisciplinar, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
Javier Ibáñez: Instituto de Instrumentación para Imagen Molecular, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
José M. Alonso: Instituto de Instrumentación para Imagen Molecular, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
Michael M. Tung: Instituto de Matemática Multidisciplinar, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
Teresa Real-Herráiz: Instituto de Matemática Multidisciplinar, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain

Mathematics, 2021, vol. 9, issue 18, 1-18

Abstract: Matrix differential equations are at the heart of many science and engineering problems. In this paper, a procedure based on higher-order matrix splines is proposed to provide the approximated numerical solution of special nonlinear third-order matrix differential equations, having the form Y ( 3 ) ( x ) = f ( x , Y ( x ) ) . Some numerical test problems are also included, whose solutions are computed by our method.

Keywords: higher-order matrix splines; third-order matrix differential equations (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/9/18/2262/pdf (application/pdf)
https://www.mdpi.com/2227-7390/9/18/2262/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:9:y:2021:i:18:p:2262-:d:635861

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:9:y:2021:i:18:p:2262-:d:635861