EconPapers    
Economics at your fingertips  
 

Localization of Rolling Element Faults Using Improved Binary Particle Swarm Optimization Algorithm for Feature Selection Task

Chun-Yao Lee and Guang-Lin Zhuo
Additional contact information
Chun-Yao Lee: Department of Electrical Engineering, Chung Yuan Christian University, No. 200, Zhongbei Road, Zhongli District, Taoyuan City 320, Taiwan
Guang-Lin Zhuo: Department of Electrical Engineering, Chung Yuan Christian University, No. 200, Zhongbei Road, Zhongli District, Taoyuan City 320, Taiwan

Mathematics, 2021, vol. 9, issue 18, 1-22

Abstract: The accurate localization of the rolling element failure is very important to ensure the reliability of rotating machinery. This paper proposes an efficient and anti-noise fault diagnosis model for rolling elements. The proposed model is composed of feature extraction, feature selection and fault classification. Feature extraction is composed of signal processing and signal noise reduction. Signal processing is carried out by local mean decomposition (LMD), and signal noise reduction is performed by product function (PF) selection and wavelet packet decomposition (WPD). Through the steps of signal noise reduction, high-frequency noise can be effectively removed, and the fault information hidden under the noise can be extracted. To further improve the effectiveness of the diagnostic model, an improved binary particle swarm optimization (IBPSO) is proposed to find the most important features from the feature space. In IBPSO, cycling time-varying inertia weight is introduced to balance exploitation and exploration and improve the capability to escape from local solutions, and crossover and mutation operations are also introduced to improve exploration and exploitation capabilities, respectively. The main contributions of this research are briefly described as follows: (1) The feature extraction process applied in this research can effectively remove noise and establish a high-accuracy feature set. (2) The proposed feature selection algorithm has higher accuracy than the other state-of-the-art feature selection algorithms. (3) In a strong noise environment, the proposed rolling element fault diagnosis model is compared with the state-of-the-art fault diagnosis model in terms of classification accuracy. Experimental results show that the model can maintain high classification accuracy in a strong noise environment. Therefore, it can be proved that the fault diagnosis model proposed in this paper can be effectively applied to the fault diagnosis of rotating machinery.

Keywords: rolling element; fault diagnosis model; local mean decomposition; wavelet packet decomposition; binary particle swarm optimization (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2021
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.mdpi.com/2227-7390/9/18/2302/pdf (application/pdf)
https://www.mdpi.com/2227-7390/9/18/2302/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:9:y:2021:i:18:p:2302-:d:638305

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:9:y:2021:i:18:p:2302-:d:638305