Large Deformation Problem of Bimodular Functionally-Graded Thin Circular Plates Subjected to Transversely Uniformly-Distributed Load: Perturbation Solution without Small-Rotation-Angle Assumption
Xue Li,
Xiao-Ting He,
Jie-Chuan Ai and
Jun-Yi Sun
Additional contact information
Xue Li: School of Civil Engineering, Chongqing University, Chongqing 400045, China
Xiao-Ting He: School of Civil Engineering, Chongqing University, Chongqing 400045, China
Jie-Chuan Ai: School of Civil Engineering, Chongqing University, Chongqing 400045, China
Jun-Yi Sun: School of Civil Engineering, Chongqing University, Chongqing 400045, China
Mathematics, 2021, vol. 9, issue 18, 1-27
Abstract:
In this study, the large deformation problem of a functionally-graded thin circular plate subjected to transversely uniformly-distributed load and with different moduli in tension and compression (bimodular property) is theoretically analyzed, in which the small-rotation-angle assumption, commonly used in the classical Föppl–von Kármán equations of large deflection problems, is abandoned. First, based on the mechanical model on the neutral layer, the bimodular functionally-graded property of materials is modeled as two different exponential functions in the tensile and compressive zones. Thus, the governing equations of the large deformation problem are established and improved, in which the equation of equilibrium is derived without the common small-rotation-angle assumption. Taking the central deflection as a perturbation parameter, the perturbation method is used to solve the governing equations, thus the perturbation solutions of deflection and stress are obtained under different boundary constraints and the regression of the solution is satisfied. Results indicate that the perturbation solutions presented in this study have higher computational accuracy in comparison with the existing perturbation solutions with small-rotation-angle assumption. Specially, the computational accuracies of external load and yield stress are improved by 17.22% and 28.79% at most, respectively, by the numerical examples. In addition, the small-rotation-angle assumption has a great influence on the yield stress at the center of the bimodular functionally-graded circular plate.
Keywords: bimodular functionally graded materials; thin circular plate; large deformation; small-rotation-angle assumption; perturbation method (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2021
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/2227-7390/9/18/2317/pdf (application/pdf)
https://www.mdpi.com/2227-7390/9/18/2317/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:9:y:2021:i:18:p:2317-:d:638922
Access Statistics for this article
Mathematics is currently edited by Ms. Emma He
More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().