EconPapers    
Economics at your fingertips  
 

Epistemic Complexity of the Mathematical Object “Integral”

Enrique Mateus-Nieves and Vicenç Font Moll
Additional contact information
Enrique Mateus-Nieves: Mathematics Department, Externado University of Colombia, Bogotá 111711, Colombia
Vicenç Font Moll: Facultat d’Educació, Universitat de Barcelona, 08007 Barcelona, Spain

Mathematics, 2021, vol. 9, issue 19, 1-25

Abstract: The literature in mathematics education identifies a traditional formal mechanistic-type paradigm in Integral Calculus teaching which is focused on the content to be taught but not on how to teach it. Resorting to the history of the genesis of knowledge makes it possible to identify variables in the mathematical content of the curriculum that have a positive influence on the appropriation of the notions and procedures of calculus, enabling a particularised way of teaching. Objective: The objective of this research was to characterise the anthology of the integral seen from the epistemic complexity that composes it based on historiography. Design: The modelling of epistemic complexity for the definite integral was considered, based on the theoretical construct “epistemic configuration”. Analysis and results: Formalising this complexity revealed logical keys and epistemological elements in the process of the theoretical constitution that reflected epistemological ruptures which, in the organisation of the information, gave rise to three periods for the integral. The characterisation of this complexity and the connection of its components were used to design a process of teaching the integral that was applied to three groups of university students. The implementation showed that a paradigm shift in the teaching process is possible, allowing students to develop mathematical competencies.

Keywords: complexity; articulation; epistemic configuration; integral calculus (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2021
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/9/19/2453/pdf (application/pdf)
https://www.mdpi.com/2227-7390/9/19/2453/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:9:y:2021:i:19:p:2453-:d:648882

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:9:y:2021:i:19:p:2453-:d:648882