EconPapers    
Economics at your fingertips  
 

Mathematical Analysis of Maxwell Fluid Flow through a Porous Plate Channel Induced by a Constantly Accelerating or Oscillating Wall

Constantin Fetecau, Rahmat Ellahi and Sadiq M. Sait
Additional contact information
Constantin Fetecau: Section of Mathematics, Academy of Romanian Scientists, 050094 Bucharest, Romania
Rahmat Ellahi: Department of Mathematics & Statistics, Faculty of Basic and Applied Sciences, International Islamic University, Islamabad 44000, Pakistan
Sadiq M. Sait: Center for Communications and IT Research, Research Institute, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia

Mathematics, 2021, vol. 9, issue 1, 1-13

Abstract: Exact expressions for dimensionless velocity and shear stress fields corresponding to two unsteady motions of incompressible upper-convected Maxwell (UCM) fluids through a plate channel are analytically established. The porous effects are taken into consideration. The fluid motion is generated by one of the plates which is moving in its plane and the obtained solutions satisfy all imposed initial and boundary conditions. The starting solutions corresponding to the oscillatory motion are presented as sum of their steady-state and transient components. They can be useful for those who want to eliminate the transients from their experiments. For a check of the obtained results, their steady-state components are presented in different forms whose equivalence is graphically illustrated. Analytical solutions for the incompressible Newtonian fluids performing the same motions are recovered as limiting cases of the presented results. The influence of physical parameters on the fluid motion is graphically shown and discussed. It is found that the Maxwell fluids flow slower as compared to Newtonian fluids. The required time to reach the steady-state is also presented. It is found that the presence of porous medium delays the appearance of the steady-state.

Keywords: Maxwell fluid; porous plate channel; unsteady motions; finite Fourier sine transform; exact solutions (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2021
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.mdpi.com/2227-7390/9/1/90/pdf (application/pdf)
https://www.mdpi.com/2227-7390/9/1/90/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:9:y:2021:i:1:p:90-:d:474348

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:9:y:2021:i:1:p:90-:d:474348