EconPapers    
Economics at your fingertips  
 

Contact Dynamics: Legendrian and Lagrangian Submanifolds

Oğul Esen, Manuel Lainz Valcázar, Manuel de León and Juan Carlos Marrero
Additional contact information
Oğul Esen: Department of Mathematics, Gebze Technical University, Gebze 41400, Turkey
Manuel Lainz Valcázar: Campus Cantoblanco Consejo Superior de Investigaciones Científicas C/Nicolás Cabrera, Instituto de Ciencias Matematicas, 13–15, 28049 Madrid, Spain
Manuel de León: Campus Cantoblanco Consejo Superior de Investigaciones Científicas C/Nicolás Cabrera, Instituto de Ciencias Matematicas, 13–15, 28049 Madrid, Spain
Juan Carlos Marrero: ULL-CSIC Geometria Diferencial y Mecánica Geométrica, Departamento de Matematicas, Estadistica e I O, Sección de Matemáticas, Facultad de Ciencias, Universidad de la Laguna, 38071 La Laguna, Spain

Mathematics, 2021, vol. 9, issue 21, 1-41

Abstract: We are proposing Tulczyjew’s triple for contact dynamics. The most important ingredients of the triple, namely symplectic diffeomorphisms, special symplectic manifolds, and Morse families, are generalized to the contact framework. These geometries permit us to determine so-called generating family (obtained by merging a special contact manifold and a Morse family) for a Legendrian submanifold. Contact Hamiltonian and Lagrangian Dynamics are recast as Legendrian submanifolds of the tangent contact manifold. In this picture, the Legendre transformation is determined to be a passage between two different generators of the same Legendrian submanifold. A variant of contact Tulczyjew’s triple is constructed for evolution contact dynamics.

Keywords: Tulczyjew’s triple; contact dynamics; evolution contact dynamics; Legendrian submanifold; Lagrangian submanifold (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2021
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/9/21/2704/pdf (application/pdf)
https://www.mdpi.com/2227-7390/9/21/2704/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:9:y:2021:i:21:p:2704-:d:664075

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:9:y:2021:i:21:p:2704-:d:664075