Perturbation Theory for Property ( V E ) and Tensor Product
Elvis Aponte,
José Sanabria and
Luis Vásquez
Additional contact information
Elvis Aponte: Escuela Superior Politécnica del Litoral (ESPOL), Facultad de Ciencias Naturales y Matemáticas, Departamento de Matemáticas, Campus Gustavo Galindo km. 30.5 Vía Perimetral, Guayaquil EC090112, Ecuador
José Sanabria: Departamento de Matemáticas, Facultad de Educación y Ciencias, Universidad de Sucre, Carrera 28 No. 5-267 Barrio Puerta Roja, Sincelejo 700001, Colombia
Luis Vásquez: Instituto Superior de Formación Docente Salomé Ureña-ISFODOSU, Recinto Emilio Prud’Homme, Calle R.C. Tolentino # 51, Esquina 16 de Agosto, Los Pepines, Santiago de los Caballeros 51000, Dominican Republic
Mathematics, 2021, vol. 9, issue 21, 1-12
Abstract:
Given a complex Banach space X , we investigate the stable character of the property ( V E ) for a bounded linear operator T : X ? X , under commuting perturbations that are Riesz, compact, algebraic and hereditarily polaroid. We also analyze sufficient conditions that allow the transfer of property ( V E ) from the tensorial factors T and S to its tensor product.
Keywords: semi-Fredholm operator; property (V E ); commuting perturbations; tensor product (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2021
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2227-7390/9/21/2775/pdf (application/pdf)
https://www.mdpi.com/2227-7390/9/21/2775/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:9:y:2021:i:21:p:2775-:d:670170
Access Statistics for this article
Mathematics is currently edited by Ms. Emma He
More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().