A Novel Learning-Based Binarization Scheme Selector for Swarm Algorithms Solving Combinatorial Problems
José Lemus-Romani,
Marcelo Becerra-Rozas,
Broderick Crawford,
Ricardo Soto,
Felipe Cisternas-Caneo,
Emanuel Vega,
Mauricio Castillo,
Diego Tapia,
Gino Astorga,
Wenceslao Palma,
Carlos Castro and
José García
Additional contact information
José Lemus-Romani: Escuela de Construcción Civil, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Santiago 7820436, Chile
Marcelo Becerra-Rozas: Escuela de Ingeniería Informática, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2241, Valparaíso 2362807, Chile
Broderick Crawford: Escuela de Ingeniería Informática, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2241, Valparaíso 2362807, Chile
Ricardo Soto: Escuela de Ingeniería Informática, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2241, Valparaíso 2362807, Chile
Felipe Cisternas-Caneo: Escuela de Ingeniería Informática, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2241, Valparaíso 2362807, Chile
Emanuel Vega: Escuela de Ingeniería Informática, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2241, Valparaíso 2362807, Chile
Mauricio Castillo: Escuela de Ingeniería Informática, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2241, Valparaíso 2362807, Chile
Diego Tapia: Escuela de Ingeniería Informática, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2241, Valparaíso 2362807, Chile
Gino Astorga: Escuela de Negocios Internacionales, Universidad de Valparaíso, Alcalde Prieto Nieto 452, Viña del Mar, Valparaíso 2572048, Chile
Wenceslao Palma: Escuela de Ingeniería Informática, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2241, Valparaíso 2362807, Chile
Carlos Castro: Departamento de Informática, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile
José García: Escuela de Ingeniería en Construcción, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2147, Valparaíso 2362804, Chile
Mathematics, 2021, vol. 9, issue 22, 1-41
Abstract:
Currently, industry is undergoing an exponential increase in binary-based combinatorial problems. In this regard, metaheuristics have been a common trend in the field in order to design approaches to successfully solve them. Thus, a well-known strategy includes the employment of continuous swarm-based algorithms transformed to perform in binary environments. In this work, we propose a hybrid approach that contains discrete smartly adapted population-based strategies to efficiently tackle binary-based problems. The proposed approach employs a reinforcement learning technique, known as SARSA (State–Action–Reward–State–Action), in order to utilize knowledge based on the run time. In order to test the viability and competitiveness of our proposal, we compare discrete state-of-the-art algorithms smartly assisted by SARSA. Finally, we illustrate interesting results where the proposed hybrid outperforms other approaches, thus, providing a novel option to tackle these types of problems in industry.
Keywords: combinatorial problems; metaheuristics; binarization scheme; SARSA; Q-learning; machine learning; discretization methods (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/2227-7390/9/22/2887/pdf (application/pdf)
https://www.mdpi.com/2227-7390/9/22/2887/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:9:y:2021:i:22:p:2887-:d:678101
Access Statistics for this article
Mathematics is currently edited by Ms. Emma He
More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().