EconPapers    
Economics at your fingertips  
 

Long-Term Target Tracking of UAVs Based on Kernelized Correlation Filter

Junqiang Yang, Wenbing Tang and Zuohua Ding
Additional contact information
Junqiang Yang: School of Information Science and Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
Wenbing Tang: Software Engineering Institute, East China Normal University, Shanghai 200062, China
Zuohua Ding: School of Information Science and Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China

Mathematics, 2021, vol. 9, issue 23, 1-18

Abstract: During the target tracking process of unmanned aerial vehicles (UAVs), the target may disappear from view or be fully occluded by other objects, resulting in tracking failure. Therefore, determining how to identify tracking failure and re-detect the target is the key to the long-term target tracking of UAVs. Kernelized correlation filter (KCF) has been very popular for its satisfactory speed and accuracy since it was proposed. It is very suitable for UAV target tracking systems with high real-time requirements. However, it cannot detect tracking failure, so it is not suitable for long-term target tracking. Based on the above research, we propose an improved KCF to match long-term target tracking requirements. Firstly, we introduce a confidence mechanism to evaluate the target tracking results to determine the status of target tracking. Secondly, the tracking model update strategy is designed to make the model suffer from less background information interference, thereby improving the robustness of the algorithm. Finally, the Normalized Cross Correlation (NCC) template matching is used to make a regional proposal first, and then the tracking model is used for target re-detection. Then, we successfully apply the algorithm to the UAV system. The system uses binocular cameras to estimate the target position accurately, and we design a control method to keep the target in the UAV’s field of view. Our algorithm has achieved the best results in both short-term and long-term evaluations of experiments on tracking benchmarks, which proves that the algorithm is superior to the baseline algorithm and has quite good performance. Outdoor experiments show that the developed UAV system can achieve long-term, autonomous target tracking.

Keywords: unmanned aerial vehicle; object tracking; kernelized correlation filter (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2021
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/9/23/3006/pdf (application/pdf)
https://www.mdpi.com/2227-7390/9/23/3006/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:9:y:2021:i:23:p:3006-:d:686337

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:9:y:2021:i:23:p:3006-:d:686337