The STEM Methodology and Graph Theory: Some Practical Examples
Cristina Jordán,
Marina Murillo-Arcila and
Juan R. Torregrosa
Additional contact information
Cristina Jordán: Instituto de Matemática Multidisciplinar, Universitat Politècnica de València, Camino de Vera s/n, 46022 València, Spain
Marina Murillo-Arcila: Instituto Universitario de Matemática Pura y Aplicada, Universitat Politècnica de València, Camino de Vera s/n, 46022 València, Spain
Juan R. Torregrosa: Instituto de Matemática Multidisciplinar, Universitat Politècnica de València, Camino de Vera s/n, 46022 València, Spain
Mathematics, 2021, vol. 9, issue 23, 1-10
Abstract:
In this paper, we highlight that Graph Theory is certainly well suited to an applications approach. One of the basic problems that this theory solves is finding the shortest path between two points. For this purpose, we propose two real-world problems aimed at STEM undergraduate students to be solved by using shortest path algorithms from Graph Theory after previous modeling.
Keywords: weighted graphs; shortest path algorithms; Dijkstra; Bellman–Ford; modeling; STEM (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2021
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/2227-7390/9/23/3110/pdf (application/pdf)
https://www.mdpi.com/2227-7390/9/23/3110/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:9:y:2021:i:23:p:3110-:d:693886
Access Statistics for this article
Mathematics is currently edited by Ms. Emma He
More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().