EconPapers    
Economics at your fingertips  
 

Dynamics in a Predator–Prey Model with Cooperative Hunting and Allee Effect

Yanfei Du, Ben Niu and Junjie Wei
Additional contact information
Yanfei Du: School of Mathematics, Harbin Institute of Technology, Harbin 150001, China
Ben Niu: Department of Mathematics, Harbin Institute of Technology, Weihai 264209, China
Junjie Wei: School of Mathematics, Harbin Institute of Technology, Harbin 150001, China

Mathematics, 2021, vol. 9, issue 24, 1-40

Abstract: This paper deals with a diffusive predator–prey model with two delays. First, we consider the local bifurcation and global dynamical behavior of the kinetic system, which is a predator–prey model with cooperative hunting and Allee effect. For the model with weak cooperation, we prove the existence of limit cycle, and a loop of heteroclinic orbits connecting two equilibria at a threshold of conversion rate p = p # , by investigating stable and unstable manifolds of saddles. When p > p # , both species go extinct, and when p < p # , there is a separatrix. The species with initial population above the separatrix finally become extinct, and the species with initial population below it can be coexisting, oscillating sustainably, or surviving of the prey only. In the case with strong cooperation, we exhibit the complex dynamics of system, including limit cycle, loop of heteroclinic orbits among three equilibria, and homoclinic cycle with the aid of theoretical analysis or numerical simulation. There may be three stable states coexisting: extinction state, coexistence or sustained oscillation, and the survival of the prey only, and the attraction basin of each state is obtained in the phase plane. Moreover, we find diffusion may induce Turing instability and Turing–Hopf bifurcation, leaving the system with spatially inhomogeneous distribution of the species, coexistence of two different spatial-temporal oscillations. Finally, we consider Hopf and double Hopf bifurcations of the diffusive system induced by two delays: mature delay of the prey and gestation delay of the predator. Normal form analysis indicates that two spatially homogeneous periodic oscillations may coexist by increasing both delays.

Keywords: hunting cooperation; Allee effect; connecting orbit; invariant manifold; bifurcation; coexistence (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/9/24/3193/pdf (application/pdf)
https://www.mdpi.com/2227-7390/9/24/3193/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:9:y:2021:i:24:p:3193-:d:699855

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:9:y:2021:i:24:p:3193-:d:699855