EconPapers    
Economics at your fingertips  
 

Stochastic Dynamic Response Analysis of the 3D Slopes of Rockfill Dams Based on the Coupling Randomness of Strength Parameters and Seismic Ground Motion

Rui Pang and Laifu Song
Additional contact information
Rui Pang: School of Hydraulic Engineering, Faculty of Infrastructure Engineering, Dalian University of Technology, Dalian 116024, China
Laifu Song: College of Civil Engineering and Architecture, Wenzhou University, Wenzhou 325035, China

Mathematics, 2021, vol. 9, issue 24, 1-25

Abstract: Because rockfill strength and seismic ground motion are dominant factors affecting the slope stability of rockfill dams, it is very important to accurately characterize the distribution of rockfill strength parameters, develop a stochastic ground motion model suitable for rockfill dam engineering, and effectively couple strength parameters and seismic ground motion to precisely evaluate the dynamic reliability of the three-dimensional (3D) slope stability of rockfill dams. In this study, a joint probability distribution model for rockfill strength based on the copula function and a stochastic ground motion model based on the improved Clough-Penzien spectral model were built; the strength parameters and the seismic ground motion were coupled using the GF-discrepancy method, a method for the analysis of dynamic reliability of the 3D slope stability of rockfill dams was proposed based on the generalized probability density evolution method (GPDEM), and the effectiveness of the proposed method was verified. Moreover, the effect of different joint distribution models on the dynamic reliability of the slope stability of rockfill dams was revealed, the effect of the copula function type on the dynamic reliability of the slope stability was analysed, and the differences in the dynamic reliability of the slope stability under parameter randomness, seismic ground motion randomness, and coupling randomness of parameters and seismic ground motion were systematically determined. The results were as follows: the traditional joint distribution models ignored related nonnormal distribution characteristics of rockfill strength parameters, which led to excessively low calculated failure probabilities and overestimations of the reliability of the slope stability; in practice, we found that the optimal copula function should be selected to build the joint probability distribution model, and seismic ground motion randomness must be addressed in addition to parameter randomness.

Keywords: rockfill dams; three-dimensional stability analysis; generalized probability density evolution method; reliability analysis (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.mdpi.com/2227-7390/9/24/3256/pdf (application/pdf)
https://www.mdpi.com/2227-7390/9/24/3256/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:9:y:2021:i:24:p:3256-:d:703346

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:9:y:2021:i:24:p:3256-:d:703346