EconPapers    
Economics at your fingertips  
 

Microscopically Reversible Pathways with Memory

Jose Ricardo Arias-Gonzalez
Additional contact information
Jose Ricardo Arias-Gonzalez: Centro de Tecnologías Físicas, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain

Mathematics, 2021, vol. 9, issue 2, 1-21

Abstract: Statistical mechanics is a physics theory that deals with ensembles of microstates of a system compatible with environmental constraints and that on average define a thermodynamic state. The evolution of a small system is normally subjected to changing constraints, as set by a protocol, and involves a stochastic dependence on previous events. Here, we generalize the dynamic trajectories described by a realization of a physical system without dissipation to include those in which the history of previous events is necessary to understand its future. This framework is then used to characterize the processes experienced by the stochastic system, as derived from ensemble averages over the available pathways. We find that the pathways that the system traces in the presence of a protocol entail different statistics from those in its absence and prove that both types of pathways are equivalent in the limit of independent events. Such equivalence implies that a thermodynamic system cannot evolve away from equilibrium in the absence of memory. These results are useful to interpret single-molecule experiments in biophysics and other fields in nanoscience, as well as an adequate platform to describe non-equilibrium processes.

Keywords: non-markovian; memory; pathway; stochastic; microscopic reversibility; statistical mechanics; Information Theory; phase space; single molecule; non-equilibrium (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/9/2/127/pdf (application/pdf)
https://www.mdpi.com/2227-7390/9/2/127/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:9:y:2021:i:2:p:127-:d:476667

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:9:y:2021:i:2:p:127-:d:476667