EconPapers    
Economics at your fingertips  
 

Design and Analysis of a Cluster-Based Intelligent Hybrid Recommendation System for E-Learning Applications

Sundaresan Bhaskaran, Raja Marappan and Balachandran Santhi
Additional contact information
Sundaresan Bhaskaran: School of Computing, SASTRA Deemed University, Thanjavur 613401, India
Raja Marappan: School of Computing, SASTRA Deemed University, Thanjavur 613401, India
Balachandran Santhi: School of Computing, SASTRA Deemed University, Thanjavur 613401, India

Mathematics, 2021, vol. 9, issue 2, 1-21

Abstract: Recently, different recommendation techniques in e-learning have been designed that are helpful to both the learners and the educators in a wide variety of e-learning systems. Customized learning, which requires e-learning systems designed based on educational experience that suit the interests, goals, abilities, and willingness of both the learners and the educators, is required in some situations. In this research, we develop an intelligent recommender using split and conquer strategy-based clustering that can adapt automatically to the requirements, interests, and levels of knowledge of the learners. The recommender analyzes and learns the styles and characteristics of learners automatically. The different styles of learning are processed through the split and conquer strategy-based clustering. The proposed cluster-based linear pattern mining algorithm is applied to extract the functional patterns of the learners. Then, the system provides intelligent recommendations by evaluating the ratings of frequent sequences. Experiments were conducted on different groups of learners and datasets, and the proposed model suggested essential learning activities to learners based on their style of learning, interest classification, and talent features. It was experimentally found that the proposed cluster-based recommender improves the recommendation performance by resulting in more lessons completed when compared to learners present in the no-recommender cluster category. It was found that more than 65% of the learners considered all criteria to evaluate the proposed recommender. The simulation of the proposed recommender showed that for learner size values of <1000, better metric values were produced. When the learner size exceeded 1000, significant differences were obtained in the evaluated metrics. The significant differences were analyzed in terms of a computational structure depending on L , the recommendation list size, and the attributes of learners. The learners were also satisfied with the accuracy and speed of the recommender. For the sample dataset considered, a significant difference was observed in the standard deviation σ and mean μ of parameters, in terms of the Recall ( List , User ) and Ranking Score ( User ) measures, compared to other methods. The devised method performed well concerning all the considered metrics when compared to other methods. The simulation results signify that this recommender minimized the mean absolute error metric for the different clusters in comparison with some well-known methods.

Keywords: e-learning; intelligent optimization; personalization; recommendation system; hybrid recommender; cluster-based recommender (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/2227-7390/9/2/197/pdf (application/pdf)
https://www.mdpi.com/2227-7390/9/2/197/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:9:y:2021:i:2:p:197-:d:483113

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:9:y:2021:i:2:p:197-:d:483113