Approximating the Density of Random Differential Equations with Weak Nonlinearities via Perturbation Techniques
Juan-Carlos Cortés,
Elena López-Navarro,
José-Vicente Romero and
María-Dolores Roselló
Additional contact information
Juan-Carlos Cortés: Instituto Universitario de Matemática Multidisciplinar, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
Elena López-Navarro: Instituto Universitario de Matemática Multidisciplinar, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
José-Vicente Romero: Instituto Universitario de Matemática Multidisciplinar, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
María-Dolores Roselló: Instituto Universitario de Matemática Multidisciplinar, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
Mathematics, 2021, vol. 9, issue 3, 1-17
Abstract:
We combine the stochastic perturbation method with the maximum entropy principle to construct approximations of the first probability density function of the steady-state solution of a class of nonlinear oscillators subject to small perturbations in the nonlinear term and driven by a stochastic excitation. The nonlinearity depends both upon position and velocity, and the excitation is given by a stationary Gaussian stochastic process with certain additional properties. Furthermore, we approximate higher-order moments, the variance, and the correlation functions of the solution. The theoretical findings are illustrated via some numerical experiments that confirm that our approximations are reliable.
Keywords: stochastic perturbations; random nonlinear oscillator; maximum entropy principle; probability density function; stationary Gaussian noise (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/2227-7390/9/3/204/pdf (application/pdf)
https://www.mdpi.com/2227-7390/9/3/204/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:9:y:2021:i:3:p:204-:d:483532
Access Statistics for this article
Mathematics is currently edited by Ms. Emma He
More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().