EconPapers    
Economics at your fingertips  
 

Approximating the Density of Random Differential Equations with Weak Nonlinearities via Perturbation Techniques

Juan-Carlos Cortés, Elena López-Navarro, José-Vicente Romero and María-Dolores Roselló
Additional contact information
Juan-Carlos Cortés: Instituto Universitario de Matemática Multidisciplinar, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
Elena López-Navarro: Instituto Universitario de Matemática Multidisciplinar, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
José-Vicente Romero: Instituto Universitario de Matemática Multidisciplinar, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
María-Dolores Roselló: Instituto Universitario de Matemática Multidisciplinar, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain

Mathematics, 2021, vol. 9, issue 3, 1-17

Abstract: We combine the stochastic perturbation method with the maximum entropy principle to construct approximations of the first probability density function of the steady-state solution of a class of nonlinear oscillators subject to small perturbations in the nonlinear term and driven by a stochastic excitation. The nonlinearity depends both upon position and velocity, and the excitation is given by a stationary Gaussian stochastic process with certain additional properties. Furthermore, we approximate higher-order moments, the variance, and the correlation functions of the solution. The theoretical findings are illustrated via some numerical experiments that confirm that our approximations are reliable.

Keywords: stochastic perturbations; random nonlinear oscillator; maximum entropy principle; probability density function; stationary Gaussian noise (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/2227-7390/9/3/204/pdf (application/pdf)
https://www.mdpi.com/2227-7390/9/3/204/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:9:y:2021:i:3:p:204-:d:483532

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:9:y:2021:i:3:p:204-:d:483532