EconPapers    
Economics at your fingertips  
 

A New Family of Zeta Type Functions Involving the Hurwitz Zeta Function and the Alternating Hurwitz Zeta Function

Daeyeoul Kim and Yilmaz Simsek
Additional contact information
Daeyeoul Kim: Department of Mathematics and Institute of Pure and Applied Mathematics, Jeonbuk National University, Jeonju 54896, Korea
Yilmaz Simsek: Department of Mathematics, Faculty of Science, University of Akdeniz, Antalya TR-07058, Turkey

Mathematics, 2021, vol. 9, issue 3, 1-11

Abstract: In this paper, we further study the generating function involving a variety of special numbers and ploynomials constructed by the second author. Applying the Mellin transformation to this generating function, we define a new class of zeta type functions, which is related to the interpolation functions of the Apostol–Bernoulli polynomials, the Bernoulli polynomials, and the Euler polynomials. This new class of zeta type functions is related to the Hurwitz zeta function, the alternating Hurwitz zeta function, and the Lerch zeta function. Furthermore, by using these functions, we derive some identities and combinatorial sums involving the Bernoulli numbers and polynomials and the Euler numbers and polynomials.

Keywords: Bernoulli numbers and polynomials; Euler numbers and polynomials; Apostol–Bernoulli and Apostol–Euler numbers and polynomials; Hurwitz–Lerch zeta function; Hurwitz zeta function; alternating Hurwitz zeta function; generating function; Mellin transformation (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/9/3/233/pdf (application/pdf)
https://www.mdpi.com/2227-7390/9/3/233/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:9:y:2021:i:3:p:233-:d:486648

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:9:y:2021:i:3:p:233-:d:486648