EconPapers    
Economics at your fingertips  
 

Mathematical Analysis and Numerical Solution of a Model of HIV with a Discrete Time Delay

Abraham J. Arenas, Gilberto González-Parra, Jhon J. Naranjo, Myladis Cogollo and Nicolás De La Espriella
Additional contact information
Abraham J. Arenas: Departamento de Matemáticas y Estadística, Universidad de Córdoba, Montería 230002, Colombia
Gilberto González-Parra: Department of Mathematics, New Mexico Institute of Mining and Technology, Socorro, NM 87801, USA
Jhon J. Naranjo: Departamento de Matemáticas y Estadística, Universidad de Córdoba, Montería 230002, Colombia
Myladis Cogollo: Departamento de Matemáticas y Estadística, Universidad de Córdoba, Montería 230002, Colombia
Nicolás De La Espriella: Departamento de Física y Electrónica, Universidad de Córdoba, Montería 230002, Colombia

Mathematics, 2021, vol. 9, issue 3, 1-21

Abstract: We propose a mathematical model based on a set of delay differential equations that describe intracellular HIV infection. The model includes three different subpopulations of cells and the HIV virus. The mathematical model is formulated in such a way that takes into account the time between viral entry into a target cell and the production of new virions. We study the local stability of the infection-free and endemic equilibrium states. Moreover, by using a suitable Lyapunov functional and the LaSalle invariant principle, it is proved that if the basic reproduction ratio is less than unity, the infection-free equilibrium is globally asymptotically stable. In addition, we designed a non-standard difference scheme that preserves some relevant properties of the continuous mathematical model.

Keywords: HIV infection; mathematical delay model; eclipse phase; NSFD; numerical simulation (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/2227-7390/9/3/257/pdf (application/pdf)
https://www.mdpi.com/2227-7390/9/3/257/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:9:y:2021:i:3:p:257-:d:488520

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:9:y:2021:i:3:p:257-:d:488520