EconPapers    
Economics at your fingertips  
 

Bayesian Estimation of Entropy for Burr Type XII Distribution under Progressive Type-II Censored Data

Xinjing Wang and Wenhao Gui
Additional contact information
Xinjing Wang: Department of Mathematics, Beijing Jiaotong University, Beijing 100044, China
Wenhao Gui: Department of Mathematics, Beijing Jiaotong University, Beijing 100044, China

Mathematics, 2021, vol. 9, issue 4, 1-19

Abstract: With the rapid development of statistics, information entropy is proposed as an important indicator used to quantify information uncertainty. In this paper, maximum likelihood and Bayesian methods are used to obtain the estimators of the entropy for a two-parameter Burr type XII distribution under progressive type-II censored data. In the part of maximum likelihood estimation, the asymptotic confidence intervals of entropy are calculated. In Bayesian estimation, we consider non-informative and informative priors respectively, and asymmetric and symmetric loss functions are both adopted. Meanwhile, the posterior risk is also calculated to evaluate the performances of the entropy estimators against different loss functions. In a numerical simulation, the Lindley approximation and the Markov chain Monte Carlo method were used to obtain the Bayesian estimates. In turn, the highest posterior density credible intervals of the entropy were derived. Finally, average absolute bias and mean square error were used to evaluate the estimators under different methods, and a real dataset was selected to illustrate the feasibility of the above estimation model.

Keywords: bayesian estimation; entropy; loss functions; Lindley approximation; progressive type-II censored data (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/9/4/313/pdf (application/pdf)
https://www.mdpi.com/2227-7390/9/4/313/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:9:y:2021:i:4:p:313-:d:493757

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:9:y:2021:i:4:p:313-:d:493757