EconPapers    
Economics at your fingertips  
 

On the Canonical Foliation of an Indefinite Locally Conformal Kähler Manifold with a Parallel Lee Form

Elisabetta Barletta, Sorin Dragomir and Francesco Esposito
Additional contact information
Elisabetta Barletta: Dipartimento di Matematica, Informatica ed Economia, Università degli Studi della Basilicata, 85100 Potenza, Italy
Sorin Dragomir: Dipartimento di Matematica, Informatica ed Economia, Università degli Studi della Basilicata, 85100 Potenza, Italy
Francesco Esposito: Dipartimento di Matematica e Fisica Ennio De Giorgi, Università del Salento, 73100 Lecce, Italy

Mathematics, 2021, vol. 9, issue 4, 1-15

Abstract: We study the semi-Riemannian geometry of the foliation F of an indefinite locally conformal Kähler (l.c.K.) manifold M , given by the Pfaffian equation ? = 0 , provided that ? ? = 0 and c = ? ? ? ? 0 ( ? is the Lee form of M ). If M is conformally flat then every leaf of F is shown to be a totally geodesic semi-Riemannian hypersurface in M , and a semi-Riemannian space form of sectional curvature c / 4 , carrying an indefinite c-Sasakian structure. As a corollary of the result together with a semi-Riemannian version of the de Rham decomposition theorem any geodesically complete, conformally flat, indefinite Vaisman manifold of index 2 s , 0 < s < n , is locally biholomorphically homothetic to an indefinite complex Hopf manifold C H s n ( ? ) , 0 < ? < 1 , equipped with the indefinite Boothby metric g s , n .

Keywords: indefinite locally conformal Kähler manifold; indefinite Hopf manifold; indefinite Boothby metric; indefinite Vaisman manifold; Lee vector field; Lee form; canonical foliation; indefinite Sasakian structure (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/9/4/333/pdf (application/pdf)
https://www.mdpi.com/2227-7390/9/4/333/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:9:y:2021:i:4:p:333-:d:495188

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:9:y:2021:i:4:p:333-:d:495188