EconPapers    
Economics at your fingertips  
 

Nonlocal Reaction–Diffusion Models of Heterogeneous Wealth Distribution

Malay Banerjee, Sergei V. Petrovskii and Vitaly Volpert
Additional contact information
Malay Banerjee: Department of Mathematics & Statistics, IIT Kanpur, Kanpur 208016, India
Sergei V. Petrovskii: School of Mathematics & Actuarial Science, University of Leicester, Leicester LE1 7RH, UK
Vitaly Volpert: Institut Camille Jordan, UMR 5208 CNRS, University Lyon 1, 69622 Villeurbanne, France

Mathematics, 2021, vol. 9, issue 4, 1-18

Abstract: Dynamics of human populations can be affected by various socio-economic factors through their influence on the natality and mortality rates, and on the migration intensity and directions. In this work we study an economic–demographic model which takes into account the dependence of the wealth production rate on the available resources. In the case of nonlocal consumption of resources, the homogeneous-in-space wealth–population distribution is replaced by a periodic-in-space distribution for which the total wealth increases. For the global consumption of resources, if the wealth redistribution is small enough, then the homogeneous distribution is replaced by a heterogeneous one with a single wealth accumulation center. Thus, economic and demographic characteristics of nonlocal and global economies can be quite different in comparison with the local economy.

Keywords: human population dynamics; wealth distribution; nonlocal consumption of resources; spatial patterns (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/2227-7390/9/4/351/pdf (application/pdf)
https://www.mdpi.com/2227-7390/9/4/351/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:9:y:2021:i:4:p:351-:d:496942

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:9:y:2021:i:4:p:351-:d:496942