A Proposal of Quantum-Inspired Machine Learning for Medical Purposes: An Application Case
Domenico Pomarico,
Annarita Fanizzi,
Nicola Amoroso,
Roberto Bellotti,
Albino Biafora,
Samantha Bove,
Vittorio Didonna,
Daniele La Forgia,
Maria Irene Pastena,
Pasquale Tamborra,
Alfredo Zito,
Vito Lorusso and
Raffaella Massafra
Additional contact information
Domenico Pomarico: Struttura Semplice Dipartimentale di Fisica Sanitaria, I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy
Annarita Fanizzi: Struttura Semplice Dipartimentale di Fisica Sanitaria, I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy
Nicola Amoroso: Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari, 70126 Bari, Italy
Roberto Bellotti: Istituto Nazionale di Fisica Nucleare, Sezione di Bari, 70126 Bari, Italy
Albino Biafora: Dipartimento di Economia e Finanza, Università degli Studi di Bari, 70124 Bari, Italy
Samantha Bove: Dipartimento di Matematica, Università degli Studi di Bari, 70126 Bari, Italy
Vittorio Didonna: Struttura Semplice Dipartimentale di Fisica Sanitaria, I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy
Daniele La Forgia: Struttura Semplice Dipartimentale di Radiologia Senologica, I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy
Maria Irene Pastena: Unità Operativa Complessa di Anatomia Patologica, I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy
Pasquale Tamborra: Struttura Semplice Dipartimentale di Fisica Sanitaria, I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy
Alfredo Zito: Unità Operativa Complessa di Anatomia Patologica, I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy
Vito Lorusso: Unità Operativa Complessa di Oncologia Medica, I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy
Raffaella Massafra: Struttura Semplice Dipartimentale di Fisica Sanitaria, I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy
Mathematics, 2021, vol. 9, issue 4, 1-15
Abstract:
Learning tasks are implemented via mappings of the sampled data set, including both the classical and the quantum framework. Biomedical data characterizing complex diseases such as cancer typically require an algorithmic support for clinical decisions, especially for early stage tumors that typify breast cancer patients, which are still controllable in a therapeutic and surgical way. Our case study consists of the prediction during the pre-operative stage of lymph node metastasis in breast cancer patients resulting in a negative diagnosis after clinical and radiological exams. The classifier adopted to establish a baseline is characterized by the result invariance for the order permutation of the input features, and it exploits stratifications in the training procedure. The quantum one mimics support vector machine mapping in a high-dimensional feature space, yielded by encoding into qubits, while being characterized by complexity. Feature selection is exploited to study the performances associated with a low number of features, thus implemented in a feasible time. Wide variations in sensitivity and specificity are observed in the selected optimal classifiers during cross-validations for both classification system types, with an easier detection of negative or positive cases depending on the choice between the two training schemes. Clinical practice is still far from being reached, even if the flexible structure of quantum-inspired classifier circuits guarantees further developments to rule interactions among features: this preliminary study is solely intended to provide an overview of the particular tree tensor network scheme in a simplified version adopting just product states, as well as to introduce typical machine learning procedures consisting of feature selection and classifier performance evaluation.
Keywords: early stage cancer; input data; feature space (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2227-7390/9/4/410/pdf (application/pdf)
https://www.mdpi.com/2227-7390/9/4/410/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:9:y:2021:i:4:p:410-:d:502404
Access Statistics for this article
Mathematics is currently edited by Ms. Emma He
More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().