EconPapers    
Economics at your fingertips  
 

Long Dimodules and Quasitriangular Weak Hopf Monoids

José Nicanor Alonso Álvarez, José Manuel Fernández Vilaboa and Ramón González Rodríguez
Additional contact information
José Nicanor Alonso Álvarez: Departamento de Matemáticas, Universidade de Vigo, Campus Universitario Lagoas-Marcosende, E-36280 Vigo, Spain
José Manuel Fernández Vilaboa: Departamento de Álxebra, Universidade de Santiago de Compostela, E-15771 Santiago de Compostela, Spain
Ramón González Rodríguez: Departamento de Matemática Aplicada II, Universidade de Vigo, Campus Universitario Lagoas Marcosende, E-36310 Vigo, Spain

Mathematics, 2021, vol. 9, issue 4, 1-34

Abstract: In this paper, we prove that for any pair of weak Hopf monoids H and B in a symmetric monoidal category where every idempotent morphism splits, the category of H - B -Long dimodules H B Long is monoidal. Moreover, if H is quasitriangular and B coquasitriangular, we also prove that H B Long is braided. As a consequence of this result, we obtain that if H is triangular and B cotriangular, H B Long is an example of a symmetric monoidal category.

Keywords: Braided (symmetric) monoidal category; Long dimodule; (co)quasitriangular weak Hopf monoid (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2021
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/9/4/424/pdf (application/pdf)
https://www.mdpi.com/2227-7390/9/4/424/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:9:y:2021:i:4:p:424-:d:503075

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:9:y:2021:i:4:p:424-:d:503075