EconPapers    
Economics at your fingertips  
 

( ?, c )-Periodic Mild Solutions to Non-Autonomous Abstract Differential Equations

Luciano Abadias, Edgardo Alvarez and Rogelio Grau
Additional contact information
Luciano Abadias: Departamento de Matemáticas, Instituto Universitario de Matemáticas y Aplicaciones, Universidad de Zaragoza, 50009 Zaragoza, Spain
Edgardo Alvarez: Departamento de Matemáticas y Estadística, Universidad del Norte, 080001 Barranquilla, Colombia
Rogelio Grau: Departamento de Matemáticas y Estadística, Universidad del Norte, 080001 Barranquilla, Colombia

Mathematics, 2021, vol. 9, issue 5, 1-15

Abstract: We investigate the semi-linear, non-autonomous, first-order abstract differential equation x ? ( t ) = A ( t ) x ( t ) + f ( t , x ( t ) , ? [ ? ( t , x ( t ) ) ] ) , t ? R . We obtain results on existence and uniqueness of ( ? , c ) -periodic (second-kind periodic) mild solutions, assuming that A ( t ) satisfies the so-called Acquistapace–Terreni conditions and the homogeneous associated problem has an integrable dichotomy. A new composition theorem and further regularity theorems are given.

Keywords: Acquistapace–Terreni conditions; non-autonomous semi-linear equation; periodic; ( ? , c )-periodic; delay (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/9/5/474/pdf (application/pdf)
https://www.mdpi.com/2227-7390/9/5/474/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:9:y:2021:i:5:p:474-:d:505617

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:9:y:2021:i:5:p:474-:d:505617