Nonlinear Pantograph-Type Diffusion PDEs: Exact Solutions and the Principle of Analogy
Andrei D. Polyanin and
Vsevolod G. Sorokin
Additional contact information
Andrei D. Polyanin: Ishlinsky Institute for Problems in Mechanics RAS, 101 Vernadsky Avenue, bldg 1, 119526 Moscow, Russia
Vsevolod G. Sorokin: Ishlinsky Institute for Problems in Mechanics RAS, 101 Vernadsky Avenue, bldg 1, 119526 Moscow, Russia
Mathematics, 2021, vol. 9, issue 5, 1-22
Abstract:
We study nonlinear pantograph-type reaction–diffusion PDEs, which, in addition to the unknown u = u ( x , t ) , also contain the same functions with dilated or contracted arguments of the form w = u ( p x , t ) , w = u ( x , q t ) , and w = u ( p x , q t ) , where p and q are the free scaling parameters (for equations with proportional delay we have 0 < p < 1 , 0 < q < 1 ). A brief review of publications on pantograph-type ODEs and PDEs and their applications is given. Exact solutions of various types of such nonlinear partial functional differential equations are described for the first time. We present examples of nonlinear pantograph-type PDEs with proportional delay, which admit traveling-wave and self-similar solutions (note that PDEs with constant delay do not have self-similar solutions). Additive, multiplicative and functional separable solutions, as well as some other exact solutions are also obtained. Special attention is paid to nonlinear pantograph-type PDEs of a rather general form, which contain one or two arbitrary functions. In total, more than forty nonlinear pantograph-type reaction–diffusion PDEs with dilated or contracted arguments, admitting exact solutions, have been considered. Multi-pantograph nonlinear PDEs are also discussed. The principle of analogy is formulated, which makes it possible to efficiently construct exact solutions of nonlinear pantograph-type PDEs. A number of exact solutions of more complex nonlinear functional differential equations with varying delay, which arbitrarily depends on time or spatial coordinate, are also described. The presented equations and their exact solutions can be used to formulate test problems designed to evaluate the accuracy of numerical and approximate analytical methods for solving the corresponding nonlinear initial-boundary value problems for PDEs with varying delay. The principle of analogy allows finding solutions to other nonlinear pantograph-type PDEs (including nonlinear wave-type PDEs and higher-order equations).
Keywords: nonlinear reaction–diffusion equations; pantograph-type differential equations; PDEs with proportional delay; PDEs with varying delay; partial functional-differential equations; exact solutions; self-similar solutions; additive and multiplicative separable solutions; functional separable solutions; generalized separable solutions (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
https://www.mdpi.com/2227-7390/9/5/511/pdf (application/pdf)
https://www.mdpi.com/2227-7390/9/5/511/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:9:y:2021:i:5:p:511-:d:508727
Access Statistics for this article
Mathematics is currently edited by Ms. Emma He
More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().