EconPapers    
Economics at your fingertips  
 

DBTMPE: Deep Bidirectional Transformers-Based Masked Predictive Encoder Approach for Music Genre Classification

Lvyang Qiu, Shuyu Li and Yunsick Sung
Additional contact information
Lvyang Qiu: Department of Multimedia Engineering, Dongguk University–Seoul, Seoul 04620, Korea
Shuyu Li: Department of Multimedia Engineering, Dongguk University–Seoul, Seoul 04620, Korea
Yunsick Sung: Department of Multimedia Engineering, Dongguk University–Seoul, Seoul 04620, Korea

Mathematics, 2021, vol. 9, issue 5, 1-17

Abstract: Music is a type of time-series data. As the size of the data increases, it is a challenge to build robust music genre classification systems from massive amounts of music data. Robust systems require large amounts of labeled music data, which necessitates time- and labor-intensive data-labeling efforts and expert knowledge. This paper proposes a musical instrument digital interface (MIDI) preprocessing method, Pitch to Vector (Pitch2vec), and a deep bidirectional transformers-based masked predictive encoder (MPE) method for music genre classification. The MIDI files are considered as input. MIDI files are converted to the vector sequence by Pitch2vec before being input into the MPE. By unsupervised learning, the MPE based on deep bidirectional transformers is designed to extract bidirectional representations automatically, which are musicological insight. In contrast to other deep-learning models, such as recurrent neural network (RNN)-based models, the MPE method enables parallelization over time-steps, leading to faster training. To evaluate the performance of the proposed method, experiments were conducted on the Lakh MIDI music dataset. During MPE training, approximately 400,000 MIDI segments were utilized for the MPE, for which the recovery accuracy rate reached 97%. In the music genre classification task, the accuracy rate and other indicators of the proposed method were more than 94%. The experimental results indicate that the proposed method improves classification performance compared with state-of-the-art models.

Keywords: music genre classification; MIDI; transformer model; unsupervised learning (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
https://www.mdpi.com/2227-7390/9/5/530/pdf (application/pdf)
https://www.mdpi.com/2227-7390/9/5/530/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:9:y:2021:i:5:p:530-:d:509902

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:9:y:2021:i:5:p:530-:d:509902