Global Persistence of the Unit Eigenvectors of Perturbed Eigenvalue Problems in Hilbert Spaces: The Odd Multiplicity Case
Pierluigi Benevieri,
Alessandro Calamai,
Massimo Furi and
Maria Patrizia Pera
Additional contact information
Pierluigi Benevieri: Instituto de Matemática e Estatística, Universidade de São Paulo, Rua do Matão 1010, 05508-09 São Paulo, Brazil
Alessandro Calamai: Dipartimento di Ingegneria Civile, Edile e Architettura, Università Politecnica delle Marche, Via Brecce Bianche, I-60131 Ancona, Italy
Massimo Furi: Dipartimento di Matematica e Informatica “Ulisse Dini”, Università degli Studi di Firenze, Via S. Marta 3, I-50139 Florence, Italy
Maria Patrizia Pera: Dipartimento di Matematica e Informatica “Ulisse Dini”, Università degli Studi di Firenze, Via S. Marta 3, I-50139 Florence, Italy
Mathematics, 2021, vol. 9, issue 5, 1-18
Abstract:
We study the persistence of eigenvalues and eigenvectors of perturbed eigenvalue problems in Hilbert spaces. We assume that the unperturbed problem has a nontrivial kernel of odd dimension and we prove a Rabinowitz-type global continuation result. The approach is topological, based on a notion of degree for oriented Fredholm maps of index zero between real differentiable Banach manifolds.
Keywords: eigenvalues; eigenvectors; nonlinear spectral theory; topological degree; bifurcation (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2021
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2227-7390/9/5/561/pdf (application/pdf)
https://www.mdpi.com/2227-7390/9/5/561/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:9:y:2021:i:5:p:561-:d:511714
Access Statistics for this article
Mathematics is currently edited by Ms. Emma He
More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().