EconPapers    
Economics at your fingertips  
 

Global Persistence of the Unit Eigenvectors of Perturbed Eigenvalue Problems in Hilbert Spaces: The Odd Multiplicity Case

Pierluigi Benevieri, Alessandro Calamai, Massimo Furi and Maria Patrizia Pera
Additional contact information
Pierluigi Benevieri: Instituto de Matemática e Estatística, Universidade de São Paulo, Rua do Matão 1010, 05508-09 São Paulo, Brazil
Alessandro Calamai: Dipartimento di Ingegneria Civile, Edile e Architettura, Università Politecnica delle Marche, Via Brecce Bianche, I-60131 Ancona, Italy
Massimo Furi: Dipartimento di Matematica e Informatica “Ulisse Dini”, Università degli Studi di Firenze, Via S. Marta 3, I-50139 Florence, Italy
Maria Patrizia Pera: Dipartimento di Matematica e Informatica “Ulisse Dini”, Università degli Studi di Firenze, Via S. Marta 3, I-50139 Florence, Italy

Mathematics, 2021, vol. 9, issue 5, 1-18

Abstract: We study the persistence of eigenvalues and eigenvectors of perturbed eigenvalue problems in Hilbert spaces. We assume that the unperturbed problem has a nontrivial kernel of odd dimension and we prove a Rabinowitz-type global continuation result. The approach is topological, based on a notion of degree for oriented Fredholm maps of index zero between real differentiable Banach manifolds.

Keywords: eigenvalues; eigenvectors; nonlinear spectral theory; topological degree; bifurcation (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2021
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/9/5/561/pdf (application/pdf)
https://www.mdpi.com/2227-7390/9/5/561/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:9:y:2021:i:5:p:561-:d:511714

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:9:y:2021:i:5:p:561-:d:511714