EconPapers    
Economics at your fingertips  
 

Aluminium Parts Casting Scheduling Based on Simulated Annealing

Antonio Jiménez-Martín, Alfonso Mateos and Josefa Z. Hernández
Additional contact information
Antonio Jiménez-Martín: Decision Analysis and Statistics Group, E.T.S.I. Informáticos, Universidad Politécnica de Madrid, Campus de Montegancedo S/N, 28660 Boadilla del Monte, Spain
Alfonso Mateos: Decision Analysis and Statistics Group, E.T.S.I. Informáticos, Universidad Politécnica de Madrid, Campus de Montegancedo S/N, 28660 Boadilla del Monte, Spain
Josefa Z. Hernández: Decision Analysis and Statistics Group, E.T.S.I. Informáticos, Universidad Politécnica de Madrid, Campus de Montegancedo S/N, 28660 Boadilla del Monte, Spain

Mathematics, 2021, vol. 9, issue 7, 1-18

Abstract: This paper focuses on the last stage of the aluminium production process in the context of Industry 4.0: schedule optimization in the casting process. Casting is one of the oldest manufacturing processes in which a liquid material is usually poured into a mold that contains a hollow cavity of the desired shape and then allowed to solidify. This is a complex scheduling problem in which several constraints, such as different maintenance processes, maximum stocks, machine breakdowns, work shifts, or the maximum number of mold changes per day, come into play. Four objective functions have to be taken into account simultaneously. We have to minimize both the unmet demand at the end of the schedule, and the delays in the injection process with regard to daily demands. Production costs, including the cost of electricity consumption in the injection process and gas consumption associated with melting furnaces, should be minimized. Finally, the total number of mold changes throughout the schedule must also be reduced to a minimum. The simulated annealing (SA) metaheuristic has been adapted to solve this complex optimization process and parameterized for application to a wide variety of aluminium making processes. SA efficiently solves the problem and provides an optimal solution in about three minutes.

Keywords: aluminium production process; schedule optimization in the casting process; simulated annealing (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://www.mdpi.com/2227-7390/9/7/741/pdf (application/pdf)
https://www.mdpi.com/2227-7390/9/7/741/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:9:y:2021:i:7:p:741-:d:527169

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:9:y:2021:i:7:p:741-:d:527169