New Robust Cross-Variogram Estimators and Approximations of Their Distributions Based on Saddlepoint Techniques
Alfonso García-Pérez
Additional contact information
Alfonso García-Pérez: Departamento de Estadística, I.O. y C.N., Universidad Nacional de Educación a Distancia (UNED), Paseo Senda del Rey 9, 28040 Madrid, Spain
Mathematics, 2021, vol. 9, issue 7, 1-21
Abstract:
Let Z ( s ) = ( Z 1 ( s ) , … , Z p ( s ) ) t be an isotropic second-order stationary multivariate spatial process. We measure the statistical association between the p random components of Z with the correlation coefficients and measure the spatial dependence with variograms. If two of the Z components are correlated, the spatial information provided by one of them can improve the information of the other. To capture this association, both within components of Z ( s ) and across s , we use a cross-variogram. Only two robust cross-variogram estimators have been proposed in the literature, both by Lark, and their sample distributions were not obtained. In this paper, we propose new robust cross-variogram estimators, following the location estimation method instead of the scale estimation one considered by Lark, thus extending the results obtained by García-Pérez to the multivariate case. We also obtain accurate approximations for their sample distributions using saddlepoint techniques and assuming a multivariate-scale contaminated normal model. The question of the independence of the transformed variables to avoid the usual dependence of spatial observations is also considered in the paper, linking it with the acceptance of linear variograms and cross-variograms.
Keywords: robustness; spatial data; saddlepoint approximations (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2227-7390/9/7/762/pdf (application/pdf)
https://www.mdpi.com/2227-7390/9/7/762/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:9:y:2021:i:7:p:762-:d:528339
Access Statistics for this article
Mathematics is currently edited by Ms. Emma He
More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().