EconPapers    
Economics at your fingertips  
 

Adaptive State-Quantized Control of Uncertain Lower-Triangular Nonlinear Systems with Input Delay

Sung Jin Yoo
Additional contact information
Sung Jin Yoo: School of Electrical and Electronics Engineering, Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul 06974, Korea

Mathematics, 2021, vol. 9, issue 7, 1-14

Abstract: In this paper, we investigate the adaptive state-quantized control problem of uncertain lower-triangular systems with input delay. It is assumed that all state variables are quantized for the feedback control design. The error transformation method using an auxiliary time-varying signal is presented to deal with the compensation problem of input delay. Based on the error surfaces with the auxiliary variable, a neural-network-based adaptive state-quantized control scheme is constructed with the design of the input delay compensator. Different from existing results in the literature, the proposed method exhibits the following features: (i) compensating for the input delay effect by using quantized states; and (ii) establishing the stability of the adaptive quantized feedback control system in the presence of input delay. Furthermore, the boundedness of all the signals in the closed-loop and the convergence of the tracking error are analyzed. The effectiveness of the developed control strategy is demonstrated through the simulation on a hydraulic servo system.

Keywords: state-quantized control; neural network; input delay; uncertain triangular nonlinear systems (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/9/7/763/pdf (application/pdf)
https://www.mdpi.com/2227-7390/9/7/763/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:9:y:2021:i:7:p:763-:d:528447

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:9:y:2021:i:7:p:763-:d:528447