EconPapers    
Economics at your fingertips  
 

A Note on the Estrada Index of the A ? -Matrix

Jonnathan Rodríguez and Hans Nina
Additional contact information
Jonnathan Rodríguez: Departamento de Matemáticas, Facultad de Ciencias Básicas, Universidad de Antofagasta, Av. Angamos 601, Antofagasta 1240000, Chile
Hans Nina: Departamento de Matemáticas, Facultad de Ciencias Básicas, Universidad de Antofagasta, Av. Angamos 601, Antofagasta 1240000, Chile

Mathematics, 2021, vol. 9, issue 8, 1-7

Abstract: Let G be a graph on n vertices. The Estrada index of G is an invariant that is calculated from the eigenvalues of the adjacency matrix of a graph. V. Nikiforov studied hybrids of A ( G ) and D ( G ) and defined the A ? -matrix for every real ? ? [ 0 , 1 ] as: A ? ( G ) = ? D ( G ) + ( 1 ? ? ) A ( G ) . In this paper, using a different demonstration technique, we present a way to compare the Estrada index of the A ? -matrix with the Estrada index of the adjacency matrix of the graph G . Furthermore, lower bounds for the Estrada index are established.

Keywords: Estrada index; ?-adjacency matrix; adjacency matrix; Laplacian matrix (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2021
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/9/8/811/pdf (application/pdf)
https://www.mdpi.com/2227-7390/9/8/811/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:9:y:2021:i:8:p:811-:d:532285

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:9:y:2021:i:8:p:811-:d:532285