EconPapers    
Economics at your fingertips  
 

CFD Simulations of Radioembolization: A Proof-of-Concept Study on the Impact of the Hepatic Artery Tree Truncation

Unai Lertxundi, Jorge Aramburu, Julio Ortega, Macarena Rodríguez-Fraile, Bruno Sangro, José Ignacio Bilbao and Raúl Antón
Additional contact information
Unai Lertxundi: Mechanical Engineering Department, TECNUN Escuela de Ingeniería, Universidad de Navarra, 20018 Donostia-San Sebastián, Spain
Jorge Aramburu: Mechanical Engineering Department, TECNUN Escuela de Ingeniería, Universidad de Navarra, 20018 Donostia-San Sebastián, Spain
Julio Ortega: Escuela de Ingeniería Mecánica, Pontificia Universidad Católica de Valparaíso, Quilpué 01567, Chile
Macarena Rodríguez-Fraile: IdiSNA, Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain
Bruno Sangro: IdiSNA, Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain
José Ignacio Bilbao: IdiSNA, Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain
Raúl Antón: Mechanical Engineering Department, TECNUN Escuela de Ingeniería, Universidad de Navarra, 20018 Donostia-San Sebastián, Spain

Mathematics, 2021, vol. 9, issue 8, 1-21

Abstract: Radioembolization (RE) is a treatment for patients with liver cancer, one of the leading cause of cancer-related deaths worldwide. RE consists of the transcatheter intraarterial infusion of radioactive microspheres, which are injected at the hepatic artery level and are transported in the bloodstream, aiming to target tumors and spare healthy liver parenchyma. In paving the way towards a computer platform that allows for a treatment planning based on computational fluid dynamics (CFD) simulations, the current simulation (model preprocess, model solving, model postprocess) times (of the order of days) make the CFD-based assessment non-viable. One of the approaches to reduce the simulation time includes the reduction in size of the simulated truncated hepatic artery. In this study, we analyze for three patient-specific hepatic arteries the impact of reducing the geometry of the hepatic artery on the simulation time. Results show that geometries can be efficiently shortened without impacting greatly on the microsphere distribution.

Keywords: computational fluid dynamics; radioembolization; hemodynamics; liver cancer; hepatic artery; computational cost analysis; personalized medicine; patient specific (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2021
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/9/8/839/pdf (application/pdf)
https://www.mdpi.com/2227-7390/9/8/839/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:9:y:2021:i:8:p:839-:d:534482

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:9:y:2021:i:8:p:839-:d:534482