EconPapers    
Economics at your fingertips  
 

Advanced Metaheuristic Method for Decision-Making in a Dynamic Job Shop Scheduling Environment

Hankun Zhang, Borut Buchmeister, Xueyan Li and Robert Ojstersek
Additional contact information
Hankun Zhang: School of E-Business and Logistics, Beijing Technology and Business University, Beijing 100048, China
Borut Buchmeister: Faculty of Mechanical Engineering, University of Maribor, 2000 Maribor, Slovenia
Xueyan Li: School of Management, Beijing Union University, Beijing 100101, China
Robert Ojstersek: Faculty of Mechanical Engineering, University of Maribor, 2000 Maribor, Slovenia

Mathematics, 2021, vol. 9, issue 8, 1-22

Abstract: As a well-known NP-hard problem, the dynamic job shop scheduling problem has significant practical value, so this paper proposes an Improved Heuristic Kalman Algorithm to solve this problem. In Improved Heuristic Kalman Algorithm, the cellular neighbor network is introduced, together with the boundary handling function, and the best position of each individual is recorded for constructing the cellular neighbor network. The encoding method is introduced based on the relative position index so that the Improved Heuristic Kalman Algorithm can be applied to solve the dynamic job shop scheduling problem. Solving the benchmark example of dynamic job shop scheduling problem and comparing it with the original Heuristic Kalman Algorithm and Genetic Algorithm-Mixed, the results show that Improved Heuristic Kalman Algorithm is effective for solving the dynamic job shop scheduling problem. The convergence rate of the Improved Heuristic Kalman Algorithm is reduced significantly, which is beneficial to avoid the algorithm from falling into the local optimum. For all 15 benchmark instances, Improved Heuristic Kalman Algorithm and Heuristic Kalman Algorithm have obtained the best solution obtained by Genetic Algorithm-Mixed. Moreover, for 9 out of 15 benchmark instances, they achieved significantly better solutions than Genetic Algorithm-Mixed. They have better robustness and reasonable running time (less than 30 s even for large size problems), which means that they are very suitable for solving the dynamic job shop scheduling problem. According to the dynamic job shop scheduling problem applicability, the integration-communication protocol was presented, which enables the transfer and use of the Improved Heuristic Kalman Algorithm optimization results in the conventional Simio simulation environment. The results of the integration-communication protocol proved the numerical and graphical matching of the optimization results and, thus, the correctness of the data transfer, ensuring high-level usability of the decision-making method in a real-world environment.

Keywords: metaheuristic algorithm; Improved Heuristic Kalman Algorithm; cellular neighbor network; simulation modeling; decision-making; dynamic job shop scheduling (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.mdpi.com/2227-7390/9/8/909/pdf (application/pdf)
https://www.mdpi.com/2227-7390/9/8/909/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:9:y:2021:i:8:p:909-:d:539118

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:9:y:2021:i:8:p:909-:d:539118