EconPapers    
Economics at your fingertips  
 

Non-Stationary Model of Cerebral Oxygen Transport with Unknown Sources

Andrey Kovtanyuk, Alexander Chebotarev, Varvara Turova, Irina Sidorenko and Renée Lampe
Additional contact information
Andrey Kovtanyuk: Fakultät für Mathematik, Technische Universität München, Boltzmannstr. 3, 85747 Garching bei München, Germany
Alexander Chebotarev: Far Eastern Federal University, Sukhanova st. 8, 690950 Vladivostok, Russia
Varvara Turova: Fakultät für Mathematik, Technische Universität München, Boltzmannstr. 3, 85747 Garching bei München, Germany
Irina Sidorenko: Fakultät für Mathematik, Technische Universität München, Boltzmannstr. 3, 85747 Garching bei München, Germany
Renée Lampe: Klinikum Rechts der Isar, Technische Universität München, Ismaningerstr. 22, 81675 München, Germany

Mathematics, 2021, vol. 9, issue 8, 1-10

Abstract: An inverse problem for a system of equations modeling oxygen transport in the brain is studied. The problem consists of finding the right-hand side of the equation for the blood oxygen transport, which is a linear combination of given functionals describing the average oxygen concentration in the neighborhoods of the ends of arterioles and venules. The overdetermination condition is determined by the values of these functionals evaluated on the solution. The unique solvability of the problem is proven without any smallness assumptions on the model parameters.

Keywords: oxygen transport in brain; nonlinear coupled parabolic equations; unique solvability; inverse problem (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/9/8/910/pdf (application/pdf)
https://www.mdpi.com/2227-7390/9/8/910/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:9:y:2021:i:8:p:910-:d:539561

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:9:y:2021:i:8:p:910-:d:539561