EconPapers    
Economics at your fingertips  
 

Real-Valued Systemic Risk Measures

Alessandro Doldi and Marco Frittelli
Additional contact information
Alessandro Doldi: Dipartimento di Matematica, Università degli Studi di Milano, Via Saldini 50, 20133 Milano, Italy
Marco Frittelli: Dipartimento di Matematica, Università degli Studi di Milano, Via Saldini 50, 20133 Milano, Italy

Mathematics, 2021, vol. 9, issue 9, 1-24

Abstract: We describe the axiomatic approach to real-valued Systemic Risk Measures, which is a natural counterpart to the nowadays classical univariate theory initiated by Artzner et al. in the seminal paper “Coherent measures of risk”, Math. Finance, (1999). In particular, we direct our attention towards Systemic Risk Measures of shortfall type with random allocations, which consider as eligible, for securing the system, those positions whose aggregated expected utility is above a given threshold. We present duality results, which allow us to motivate why this particular risk measurement regime is fair for both the single agents and the whole system at the same time. We relate Systemic Risk Measures of shortfall type to an equilibrium concept, namely a Systemic Optimal Risk Transfer Equilibrium, which conjugates Bühlmann’s Risk Exchange Equilibrium with a capital allocation problem at an initial time. We conclude by presenting extensions to the conditional, dynamic framework. The latter is the suitable setup when additional information is available at an initial time.

Keywords: systemic risk; risk measures; fairness; equilibrium; dynamic risk measures (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/2227-7390/9/9/1016/pdf (application/pdf)
https://www.mdpi.com/2227-7390/9/9/1016/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:9:y:2021:i:9:p:1016-:d:546839

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:9:y:2021:i:9:p:1016-:d:546839