EconPapers    
Economics at your fingertips  
 

Mechanical Models for Hermite Interpolation on the Unit Circle

Elías Berriochoa, Alicia Cachafeiro, Héctor García Rábade and José Manuel García-Amor
Additional contact information
Elías Berriochoa: Departamento de Matemática Aplicada I, Universidad de Vigo, 36310 Vigo, Spain
Alicia Cachafeiro: Departamento de Matemática Aplicada I, Universidad de Vigo, 36310 Vigo, Spain
Héctor García Rábade: Departamento de Matemática Aplicada II, Universidad de Vigo, 32004 Ourense, Spain
José Manuel García-Amor: Departamento de Matemáticas, Instituto E. S. Valle Inclán, 36001 Pontevedra, Spain

Mathematics, 2021, vol. 9, issue 9, 1-19

Abstract: In the present paper, we delve into the study of nodal systems on the unit circle that meet certain separation properties. Our aim was to study the Hermite interpolation process on the unit circle by using these nodal arrays. The target was to develop the corresponding interpolation theory in order to make practical use of these nodal systems linked to certain mechanical models that fit these distributions.

Keywords: Hermite interpolation; nodal systems; unit circle; convergence (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.mdpi.com/2227-7390/9/9/1043/pdf (application/pdf)
https://www.mdpi.com/2227-7390/9/9/1043/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:9:y:2021:i:9:p:1043-:d:549322

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:9:y:2021:i:9:p:1043-:d:549322