EconPapers    
Economics at your fingertips  
 

Robust Mode Analysis

Gemunu H. Gunaratne and Sukesh Roy
Additional contact information
Gemunu H. Gunaratne: Department of Physics, University of Houston, Houston, TX 77204, USA
Sukesh Roy: Spectral Energies, LLC, Dayton, OH 45431, USA

Mathematics, 2021, vol. 9, issue 9, 1-19

Abstract: In this paper, we introduce a model-free algorithm, robust mode analysis (RMA), to extract primary constituents in a fluid or reacting flow directly from high-frequency, high-resolution experimental data. It is expected to be particularly useful in studying strongly driven flows, where nonlinearities can induce chaotic and irregular dynamics. The lack of precise governing equations and the absence of symmetries or other simplifying constraints in realistic configurations preclude the derivation of analytical solutions for these systems; the presence of flow structures over a wide range of scales handicaps finding their numerical solutions. Thus, the need for direct analysis of experimental data is reinforced. RMA is predicated on the assumption that primary flow constituents are common in multiple, nominally identical realizations of an experiment. Their search relies on the identification of common dynamic modes in the experiments, the commonality established via proximity of the eigenvalues and eigenfunctions. Robust flow constituents are then constructed by combining common dynamic modes that flow at the same rate. We illustrate RMA using reacting flows behind a symmetric bluff body. Two robust constituents, whose signatures resemble symmetric and von Karman vortex shedding, are identified. It is shown how RMA can be implemented via extended dynamic mode decomposition in flow configurations interrogated with a small number of time-series. This approach may prove useful in analyzing changes in flow patterns in engines and propulsion systems equipped with sturdy arrays of pressure transducers or thermocouples. Finally, an analysis of high Reynolds number jet flows suggests that tests of statistical characterizations in turbulent flows may best be done using non-robust components of the flow.

Keywords: fluid flows; reacting flows; vortex shedding; dynamic mode decomposition (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2021
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/9/9/1057/pdf (application/pdf)
https://www.mdpi.com/2227-7390/9/9/1057/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:9:y:2021:i:9:p:1057-:d:550509

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:9:y:2021:i:9:p:1057-:d:550509