EconPapers    
Economics at your fingertips  
 

Semantic Segmentation by Multi-Scale Feature Extraction Based on Grouped Dilated Convolution Module

Dong Seop Kim, Yu Hwan Kim and Kang Ryoung Park
Additional contact information
Dong Seop Kim: Division of Electronics and Electrical Engineering, Dongguk University, 30 Pildong-ro, 1-gil, Jung-gu, Seoul 04620, Korea
Yu Hwan Kim: Division of Electronics and Electrical Engineering, Dongguk University, 30 Pildong-ro, 1-gil, Jung-gu, Seoul 04620, Korea
Kang Ryoung Park: Division of Electronics and Electrical Engineering, Dongguk University, 30 Pildong-ro, 1-gil, Jung-gu, Seoul 04620, Korea

Mathematics, 2021, vol. 9, issue 9, 1-18

Abstract: Existing studies have shown that effective extraction of multi-scale information is a crucial factor directly related to the increase in performance of semantic segmentation. Accordingly, various methods for extracting multi-scale information have been developed. However, these methods face problems in that they require additional calculations and vast computing resources. To address these problems, this study proposes a grouped dilated convolution module that combines existing grouped convolutions and atrous spatial pyramid pooling techniques. The proposed method can learn multi-scale features more simply and effectively than existing methods. Because each convolution group has different dilations in the proposed model, they have receptive fields of different sizes and can learn features corresponding to these receptive fields. As a result, multi-scale context can be easily extracted. Moreover, optimal hyper-parameters are obtained from an in-depth analysis, and excellent segmentation performance is derived. To evaluate the proposed method, open databases of the Cambridge Driving Labeled Video Database (CamVid) and the Stanford Background Dataset (SBD) are utilized. The experimental results indicate that the proposed method shows a mean intersection over union of 73.15% based on the CamVid dataset and 72.81% based on the SBD, thereby exhibiting excellent performance compared to other state-of-the-art methods.

Keywords: semantic segmentation; pixel-level classification; grouped dilated convolution module; multi-scale context (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2021
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/9/9/947/pdf (application/pdf)
https://www.mdpi.com/2227-7390/9/9/947/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:9:y:2021:i:9:p:947-:d:542103

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:9:y:2021:i:9:p:947-:d:542103