Adaptive Stepsize Control for Extrapolation Semi-Implicit Multistep ODE Solvers
Denis Butusov
Additional contact information
Denis Butusov: Youth Research Institute, Saint Petersburg Electrotechnical University “LETI”, 197376 Saint Petersburg, Russia
Mathematics, 2021, vol. 9, issue 9, 1-14
Abstract:
Developing new and efficient numerical integration techniques is of great importance in applied mathematics and computer science. Among the variety of available methods, multistep ODE solvers are broadly used in simulation software. Recently, semi-implicit integration proved to be an efficient compromise between implicit and explicit ODE solvers, and multiple high-performance semi-implicit methods were proposed. However, the computational efficiency of any ODE solver can be significantly increased through the introduction of an adaptive integration stepsize, but it requires the estimation of local truncation error. It is known that recently proposed extrapolation semi-implicit multistep methods (ESIMM) cannot operate with existing local truncation error (LTE) estimators, e.g., embedded methods approach, due to their specific right-hand side calculation algorithm. In this paper, we propose two different techniques for local truncation error estimation and study the performance of ESIMM methods with adaptive stepsize control. The first considered approach is based on two parallel semi-implicit solutions with different commutation orders. The second estimator, called the “double extrapolation” method, is a modification of the embedded method approach. The introduction of the double extrapolation LTE estimator allowed us to additionally increase the precision of the ESIMM solver. Using several known nonlinear systems, including stiff van der Pol oscillator, as the testbench, we explicitly show that ESIMM solvers can outperform both implicit and explicit linear multistep methods when implemented with an adaptive stepsize.
Keywords: differential equations; semi-implicit methods; multistep method; extrapolation; adaptive stepsize (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/2227-7390/9/9/950/pdf (application/pdf)
https://www.mdpi.com/2227-7390/9/9/950/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:9:y:2021:i:9:p:950-:d:542419
Access Statistics for this article
Mathematics is currently edited by Ms. Emma He
More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().