EconPapers    
Economics at your fingertips  
 

Phytoremediation Characterization of Heavy Metals by Some Native Plants at Anthropogenic Polluted Sites in Jeddah, Saudi Arabia

Sameera A. Alghamdi () and Manal El-Zohri
Additional contact information
Sameera A. Alghamdi: Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
Manal El-Zohri: Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia

Resources, 2024, vol. 13, issue 7, 1-18

Abstract: Many anthropogenic activities have lately resulted in soil adulteration by heavy metals (HMs). The assessment of native plant species that grow in the polluted environments is of great importance for using these plants in phytoremediation techniques. This study was conducted in three industrial regions in Jeddah city, Wadi Marik, Bahra, and Khumrah, to assess the HM contamination level in them. This study also evaluated the phytoremediation ability of nine plant species collected from the studied regions. Soil physicochemical properties of the studied sites were investigated. Nine HMs, aluminum (Al), nickel (Ni), zinc (Zn), cobalt (Co), iron (Fe), lead (Pb), manganese (Mn), chromium (Cr), and barium (Ba), have been evaluated in the collected soil, plant shoots, and root samples. Total thiol concentration in the plant shoots and roots was determined. The phytoremediation indexes, such as bioaccumulation factor (BCF) and translocation factor (TF), were estimated. The results show that the soil of all the explored sites was sandy and slightly alkaline. It was found that Ni, Pb, and Cr were above the international permissible limit in all soil samples. The Wadi Marik region recorded the highest HM concentration compared to the other sites. In the Bahra region, Fe, Zn, Co, and Mn in all collected soil samples were below internationally permissible levels. In Khumrah, the highest concentration of Zn was found in the soil sample collected around F. indica plants, while Fe, Co, and Mn in all collected soil samples were below the international permissible limit. Depending on the BCF calculations, most of the investigated species showed phytostabilization ability for most of the studied HMs. Of them, E. indica , T. nubica , and P. divisum recorded the highest BCF values that ranged from 16.1 to 3.4. The BCF values of the studied HMs reduced in the order of Cr > Zn > Mn > Co > Ba > Fe > Al > Pb. Phytoextration of Co and Cr could be achieved by P. oleracea and F. indica , which showed TF values that reached 6.7 and 6.1, respectively. These plants showed high potential for phytoremediation and can be suggested as protective belts close to the contaminated regions of Jeddah.

Keywords: heavy metals; anthropogenic polluted areas; phytostabilization; phytoextraction bioaccumulation factor; translocation factor; thiols (search for similar items in EconPapers)
JEL-codes: Q1 Q2 Q3 Q4 Q5 (search for similar items in EconPapers)
Date: 2024
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2079-9276/13/7/98/pdf (application/pdf)
https://www.mdpi.com/2079-9276/13/7/98/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jresou:v:13:y:2024:i:7:p:98-:d:1435796

Access Statistics for this article

Resources is currently edited by Ms. Donchian Ma

More articles in Resources from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jresou:v:13:y:2024:i:7:p:98-:d:1435796