EconPapers    
Economics at your fingertips  
 

Carbon Recovery from Wastewater Feedstocks: Synthesis of Polyhydroxyalkanoates for Target Applications

Mario I. Sepúlveda, Michael Seeger and Gladys Vidal ()
Additional contact information
Mario I. Sepúlveda: Molecular Microbiology and Environmental Biotechnology Laboratory, Department of Chemistry, Center of Biotechnology Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile
Michael Seeger: Molecular Microbiology and Environmental Biotechnology Laboratory, Department of Chemistry, Center of Biotechnology Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile
Gladys Vidal: Environmental Engineering & Biotechnology Group (GIBA-UDEC), Environmental Science Faculty, Universidad de Concepción, Concepción 4070386, Chile

Resources, 2025, vol. 14, issue 10, 1-21

Abstract: Polyhydroxyalkanoate (PHA) bioplastics are produced from wastewater as a carbon recovery strategy. However, the tuneable characteristics of PHAs and wastewater biorefinery potential have not been comprehensively reviewed. The aim of this study is to review the main challenges and strategies for carbon recovery from wastewater feedstocks via PHA production, assessing potential target biopolymer applications. Diverse PHA-accumulating prokaryotes metabolize organic pollutants present in wastewater through different metabolic pathways, determining the biopolymer characteristics. The synthesis of PHAs using mixed microbial cultures with wastewater feedstocks derived from municipal, agro-industrial, food processing, lignocellulosic biomass processing and biofuel production activities are described. Acidogenic fermentation of wastewater feedstocks and mixed microbial culture enrichment are key steps in order to enhance PHA productivity and determine biopolymer properties towards customized bioplastics for specific applications. Biorefinery of PHA copolymers and extracellular polysaccharides (EPSs), including alginate-like polysaccharides, are alternatives to enhance the value-chain of carbon recovery from wastewater. PHAs and EPSs exhibit a wide repertoire of applications with distinct safety control requirements; hence, coupling biopolymer production demonstrations with target applications is crucial to move towards full-scale applications. This study discusses the relationship between the metabolic basis of PHA synthesis and composition, wastewater type, and target applications, describing the potential to maximize carbon resource valorisation.

Keywords: wastewater; carbon recovery; polyhydroxyalkanoate; extracellular polysaccharide; mixed microbial culture; circular economy (search for similar items in EconPapers)
JEL-codes: Q1 Q2 Q3 Q4 Q5 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2079-9276/14/10/156/pdf (application/pdf)
https://www.mdpi.com/2079-9276/14/10/156/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jresou:v:14:y:2025:i:10:p:156-:d:1762776

Access Statistics for this article

Resources is currently edited by Ms. Donchian Ma

More articles in Resources from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-10-04
Handle: RePEc:gam:jresou:v:14:y:2025:i:10:p:156-:d:1762776