EconPapers    
Economics at your fingertips  
 

Towards Circular Economy: Evaluation of Sewage Sludge Biogas Solutions

Andrey Kiselev, Elena Magaril, Romen Magaril, Deborah Panepinto, Marco Ravina and Maria Chiara Zanetti
Additional contact information
Andrey Kiselev: Department of Investment Program, Municipal Unitary Enterprise for Water Supply and Sewerage, Tsarskaya str., 4, 620075 Ekaterinburg, Russia
Romen Magaril: Department of Oil and Gas Processing Technology, Tyumen Industrial University, Volodarskogo str., 38, 625000 Tyumen, Russian
Deborah Panepinto: Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Torino, Italy
Marco Ravina: Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Torino, Italy
Maria Chiara Zanetti: Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Torino, Italy

Resources, 2019, vol. 8, issue 2, 1-19

Abstract: Today it is obvious that the existing linear model of the economy does not correlate with the principles of sustainable development. The circular economy model can replace the current linear economy whilst addressing the issues of environmental deterioration, social equity and long-term economic growth. In the context of effectively implementing circular economy objectives, particular importance should be attributed to wastewater treatment sludge management, due to the possibility of recovering valuable raw materials and using its energy potential. Anaerobic digestion is one of the methods of recovering energy from sewage sludge. The main goal of this study is to make a preliminary evaluation of possible sewage sludge biogas and biomethane solutions using a computation model called MCBioCH 4 and compare its results with laboratory tests of sewage sludge fermentation from the northern wastewater treatment plant (WWTP) of Ekaterinburg (Russian Federation). Laboratory experiments were conducted to determine the volume and qualitative composition of biogas produced throughout anaerobic fermentation of raw materials coming from the WWTP. The specific productivity of samples ranged between 308.46 Nm 3 /t vs and 583.08 Nm 3 /t vs depending if mesophilic or thermophilic conditions were analyzed, or if the experiment was conducted with or without sludge pre-treatment. Output values from the laboratory were used as input for MCBioCH 4 to calculate the flow of biogas or biomethane produced. For the case study of Ekaterinburg two possible energy conversion options were selected: B-H (biogas combustion with cogeneration of electrical and thermal energy) and M-T (biomethane to be used in transports). The results of the energy module showed a net energy content of the biogas between 6575 MWh/year and 7200 MWh/year. Both options yielded a favorable greenhouse gas (GHG) balance, meaning that avoided emissions are higher than produced emissions. The results discussion also showed that, in this case, the B-H option is preferable to the M-T option. The implementation of the biogas/biomethane energy conversion system in Ekaterinburg WWTP necessitates further investigations to clarify the remaining technical and economic aspects

Keywords: sewage sludge; biogas evaluation; circular economy; computation modelling (search for similar items in EconPapers)
JEL-codes: Q1 Q2 Q3 Q4 Q5 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)

Downloads: (external link)
https://www.mdpi.com/2079-9276/8/2/91/pdf (application/pdf)
https://www.mdpi.com/2079-9276/8/2/91/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jresou:v:8:y:2019:i:2:p:91-:d:229113

Access Statistics for this article

Resources is currently edited by Ms. Donchian Ma

More articles in Resources from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jresou:v:8:y:2019:i:2:p:91-:d:229113