EconPapers    
Economics at your fingertips  
 

Centralized or Decentralized Rainwater Harvesting Systems: A Case Study

Daniel Słyś and Agnieszka Stec
Additional contact information
Daniel Słyś: Department of Infrastructure and Water Management, Rzeszow University of Technology, 35-959 Rzeszów, Poland
Agnieszka Stec: Department of Infrastructure and Water Management, Rzeszow University of Technology, 35-959 Rzeszów, Poland

Resources, 2020, vol. 9, issue 1, 1-18

Abstract: World population growth, climate changes, urbanization, and industrialization have all had a negative impact on natural resources, including water resources. Excessive exploitation and pollution have caused more and more regions to have problems with access to fresh water. Rainwater is perceived as a valuable alternative source of water that is most often used in a hybrid system supplementing tap water. Considering the possibilities of designing a rainwater harvesting system as a decentralized or central system, this research was undertaken to determine the hydraulic and financial efficiency of these two systems. The research was carried out for a single-family housing estate located in Poland. For this research, a simulation model was applied to determine the efficiency of water saving and the life cycle cost indicator. In variants where rainwater was only used to flush toilets, the water saving efficiency was 80% and 79% for the decentralized and centralized rainwater harvesting system (RWHS), respectively. The use of rainwater for toilet flushing and watering the garden resulted in a significant reduction in efficiency to 57% (the decentralized system) and 54% (the centralized system). On the other hand, the results of the life cycle cost (LCC) analysis showed that in spite of reducing tap water consumption, both the centralized and the decentralized rainwater harvesting system were not financially viable solutions for the housing estate, and only cofinancing investments at the level of 25% to 50% resulted in a significant improvement in financial efficiency.

Keywords: alternative water resources; rainwater harvesting; life cycle cost; financial efficiency; water saving (search for similar items in EconPapers)
JEL-codes: Q1 Q2 Q3 Q4 Q5 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
https://www.mdpi.com/2079-9276/9/1/5/pdf (application/pdf)
https://www.mdpi.com/2079-9276/9/1/5/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jresou:v:9:y:2020:i:1:p:5-:d:307896

Access Statistics for this article

Resources is currently edited by Ms. Donchian Ma

More articles in Resources from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jresou:v:9:y:2020:i:1:p:5-:d:307896