Volatility Modeling and Dependence Structure of ESG and Conventional Investments
Joanna Górka and
Katarzyna Kuziak
Additional contact information
Katarzyna Kuziak: Department of Financial Investments and Risk Management, Wroclaw University of Economics and Business, 53-345 Wrocław, Poland
Risks, 2022, vol. 10, issue 1, 1-25
Abstract:
The question of whether environmental, social, and governance investments outperform or underperform other conventional financial investments has been debated in the literature. In this study, we compare the volatility of rates of return of selected ESG indices and conventional ones and investigate dependence between them. Analysis of tail dependence is important to evaluate the diversification benefits between conventional investments and ESG investments, which is necessary in constructing optimal portfolios. It allows investors to diversify the risk of the portfolio and positively impact the environment by investing in environmentally friendly companies. Examples of institutions that are paying attention to ESG issues are banks, which are increasingly including products that support sustainability goals in their offers. This analysis could be also important for policymakers. The European Banking Authority (EBA) has admitted that ESG factors can contribute to risk. Therefore, it is important to model and quantify it. The conditional volatility models from the GARCH family and tail-dependence coefficients from the copula-based approach are applied. The analysis period covered 2007 until 2019. The period of the COVID-19 pandemic has not been analyzed due to the relatively short time series regarding data requirements from models’ perspective. Results of the research confirm the higher dependence of extreme values in the crisis period (e.g., tail-dependence values in 2009–2014 range from 0.4820/0.4933 to 0.7039/0.6083, and from 0.5002/0.5369 to 0.7296/0.6623), and low dependence of extreme values in stabilization periods (e.g., tail-dependence values in 2017–2019 range from 0.1650 until 0.6283/0.4832, and from 0.1357 until 0.6586/0.5002). Diversification benefits vary in time, and there is a need to separately analyze crisis and stabilization periods.
Keywords: ESG; risk management; volatility; GARCH; copula; tail dependence (search for similar items in EconPapers)
JEL-codes: C G0 G1 G2 G3 K2 M2 M4 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
https://www.mdpi.com/2227-9091/10/1/20/pdf (application/pdf)
https://www.mdpi.com/2227-9091/10/1/20/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jrisks:v:10:y:2022:i:1:p:20-:d:722972
Access Statistics for this article
Risks is currently edited by Mr. Claude Zhang
More articles in Risks from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().