Economics at your fingertips  

Sovereign Credit Ratings Analysis Using the Logistic Regression Model

Oliver Takawira () and John Weirstrass Muteba Mwamba ()
Additional contact information
Oliver Takawira: Department of Finance and Investment Management (DFIM), College of Business and Economics (CBE), University of Johannesburg, Johannesburg 2006, South Africa

Risks, 2022, vol. 10, issue 4, 1-24

Abstract: This study is an empirical analysis of sovereign credit ratings (SCR) in South Africa (SA) using Logistic Regression (LR) to identify their determinants and forecast SCRs. Data of macroeconomic indicators including SCRs from 1999 to 2020 in quarterly format were classified and analyzed to identify indicators utilized by Credit Rating Agencies (CRAs) and then predict future ratings CRAs take various information from political, infrastructure, financial, economic, regional, local, and other factors pertaining to a country and assess the ability of that country to pay its debt. This information is then presented through a grading scale termed rating, with the highest rating country being highly creditworthy and lowest rating likely to default. There are three major CRAs, namely, Fitch, Moodys and Standard and Poors. The study identified the use of different macroeconomic indicators by CRAs as well as different techniques in assessing and assigning sovereign credit ratings. The study points out that Household Debt to Disposable Income Ratio (HDDIR) was the most influential variable on SCRs. HDDIR, exchange rates and the inflation rate were the most crucial variables for guessing credit ratings. Policymakers should aim to reduce household debt in relation to disposable income, implement policies that strengthen the local currency and stabilize as well as lower inflation. Investors should watch out on nations that have high household debt levels as this may spill over into credit risk.

Keywords: sovereign credit ratings; macroeconomic indicators; logistic regression (search for similar items in EconPapers)
JEL-codes: C G0 G1 G2 G3 K2 M2 M4 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: Track citations by RSS feed

Downloads: (external link) (application/pdf) (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link:

Access Statistics for this article

Risks is currently edited by Dr. Sheryl Yin

More articles in Risks from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

Page updated 2022-08-12
Handle: RePEc:gam:jrisks:v:10:y:2022:i:4:p:70-:d:778137