Credit Scoring for Peer-to-Peer Lending
Daniel Felix Ahelegbey and
Paolo Giudici
Risks, 2023, vol. 11, issue 7, 1-8
Abstract:
This paper shows how to improve the measurement of credit scoring by means of factor clustering. The improved measurement applies, in particular, to small and medium enterprises (SMEs) involved in P2P lending. The approach explores the concept of familiarity which relies on the notion that the more familiar/similar things are, the closer they are in terms of functionality or hidden characteristics (latent factors that drive the observed data). The approach uses singular value decomposition to extract the factors underlying the observed financial performance ratios of SMEs. We then cluster the factors using the standard k-mean algorithm. This enables us to segment the heterogeneous population into clusters with more homogeneous characteristics. The result shows that clusters with relatively fewer number of SMEs produce a more parsimonious and interpretable credit scoring model with better default predictive performance.
Keywords: clustering; credit scoring; factor models; FinTech; P2P lending; segmentation (search for similar items in EconPapers)
JEL-codes: C G0 G1 G2 G3 K2 M2 M4 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2227-9091/11/7/123/pdf (application/pdf)
https://www.mdpi.com/2227-9091/11/7/123/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jrisks:v:11:y:2023:i:7:p:123-:d:1188948
Access Statistics for this article
Risks is currently edited by Mr. Claude Zhang
More articles in Risks from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().